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INTRODUCTION 

Several techniques exist for the numerical modeling of groundwater 

flow. Both the Finite Difference Method (FDM) and the Finite Element 

Method (FEM) have been in use for many years and have gained wide accept­

ance. A newer modeling technique has of late received much attention due 

to several marked advantages. It is called the Boundary Element Method 

(BEM). 

As micro-computers have become more affordable and accessible, 

their use for the solution of groundwater problems has become 

commonplace. One problem, however, has been the size or detail of the 

model which these smaller computers have been able to successfully 

analyze, particularly when the FDM or FEM are implemented. The BEM lends 

itself particularly well to use on small computer systems. This is due 

to the way in which the BEM can represent a particular groundwater 

problem and subsequently solve it. Because of this, the BEM is poten­

tially capable of solving much larger and more complex groundwater 

systems using micro-computers when compared to either the FDM or FEM. 

The "founding theory behind the Boundary Element Method is 

relatively simple. There are certain aspects of the implementation of 

the method in a computer program, however, which become somewhat 

difficult. This dissertation shall point out some of these problems and 

clarify to the reader the methods the author used in developing a general 

purpose, two-dimensional groundwater model using the BEM, called GWBEM. 

The emphasis shall be to elucidate aspects of both the theory and actual 
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programming of the method as well as present certain Improvements In Its 

Implementation. 

Modularity of GWBEM was Important to ensure ease of understanding 

and future modifications. A widely accepted language which was block 

oriented and easily read was needed. Because of this, Pascal was chosen 

as the developmental language. It Is a fairly transportable language 

from one machine to another. 

The types of groundwater problems which GWBEM Is capable of solving 

are two-dimensional, steady state, non-homogeneous domains with sources 

and sinks. A non-homogeneous domain for the purpose of this model 

consists of connected multiple zones, with each zone being homogeneous 

but not necessarily of the same conductive properties as adjacent zones. 

Sources and sinks may be defined In any zone, and may be designated as 

either specified potential or flow rate. Special flow situations such as 

cutoff walls and corner flow are also accommodated by the model. Unknown 

potential or flux values are calculated at all boundary points, and at 

selected Interior points as well. 

GWBEM was tested using known analytical solutions to various 

groundwater conditions and is also compared to results obtained by other 

researchers using various analytical techniques. 
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LITERATURE REVIEW 

Through the use of numerical methods, researchers have been able to 

develop highly sophisticated models which simulate physical systems and 

allow for the solution of problems which are difficult or impossible to 

solve analytically. By using and validating these models, a greater 

understanding of a given physical system may be realized. Aided by the 

computer, these models have, with time, become larger and more complex 

and have thus been able to more completely incorporate finer details of 

the systems Involved. Of great interest to those involved in water 

resources management has been the simulation of various groundwater 

scenarios as well as the inverse problem of defining aquifer properties 

from observable field data. Groundwater researchers have used various 

methods of formulating such problems to solve them numerically. The 

formulation methods used to solve these complex problems have evolved 

rapidly in the last three decades. 

Numerical Methods 

Throughout the 1960s, the method of choice for solving groundwater 

problems on computers was the finite-difference method (FDM). During the 

1970s, popularity shifted from the FDM to the finite-element method 

(FEM). The FEM had several advantages over the FDM. First, boundary 

conditions were easier to apply using the FEM, and as such, universal 

computer codes could be written which could be used in most types of 

groundwater situations. Secondly, the actual geometry of a problem could 

be used with the FEM, whereas it is oftentimes "altered" to allow the use 
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of the FDM (Liggett and Liu, 1983). Garr (1985) also points out the 

relative ease of use of the FEM over the FDM In three dimensional 

problems. Like the FDM, the FEM was a domain based formulation where the 

physical problem space was represented by a collection of nodes or 

elements (Finder and Gray, 1977). 

Despite these advantages of the FEM over the FDM, other methods 

were still pursued. At about the same time as the Initial development of 

the FEM, another formulation called the boundary element method (BEM) 

started to emerge during the early 1970s. Despite its concurrent 

development with the FEM, the BEM's initial applications were somewhat 

limited. But, as Its advantages over the FEM were eventually realized, 

Its use spread. Today, it is used to solve problems of a wide variety, 

ranging from structural analysis to predicting wave action through off­

shore drilling platforms (Brebbia, 1985). 

The BEM's advantages over the FEM's are numerous. Brebbia (1985) 

and Liggett and Liu (1983) discuss several. First, most problems are 

reduced by one dimension when solved using the BEM. This is particularly 

advantageous when dealing with problems in three dimensions. The amount 

of data preparation required for the BEM is considerably less than with 

the FEM. Less data preparation means less errors in coding. The inter-

element continuity requirements are also much less stringent with the 

BEM, which allows for more abrupt changes in element size over different 

areas of a model domain when compared to the FDM or FEM. 

The location of Internal points which require a solution may be 

specified using the BEM with those points being the only internal ones 
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required. The FEN, by contrast, calculates solutions at all interior 

points which are required for grid definition, which results in unneces­

sary effort. The interior points are required of the FEM for proper 

solution, whereas the interior points specified in the BEM are only at 

points of interest. Problems of infinite domain can be accurately solved 

using the BEM using special elements. In contrast, the FEM requires the 

mesh to be truncated at some finite boundary. Finally, since the BEM 

reduces the dimension of a problem by one, the number of equations which 

must be solved is also reduced. This can result in substantial savings 

in both computer storage and run times, making the BEM highly desirable 

for micro-computer applications. 

Development of the Boundary Element Method 

The development of the BEM as applied to groundwater problems 

apparently originated in two camps. The initial groundwork was laid out 

by Kellogg (1929) who used the integral equation method for the analyti­

cal solution of Laplace type problems. The first to propose a numerical 

solution to problems using the BEM was Trefftz in 1926 (Brebbia and 

Chang, 1985). Unfortunately, his method was hindered by the lack of 

computers during his time. In Western Europe, groups of researchers 

started to explore the possibilities of using the BEM in the early 1970s. 

Brebbia (1978) published the first general text on the use of the BEM for 

engineers. Although the text was not limited to problems dealing with 

flow through porous media, it did contain discussions on LaPlace 

problems. In the United States, Liggett (1977) published a paper on 

determining the location of the free surface in porous media. This was 
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probably the first paper which specifically addressed a groundwater 

problem using the BEM. Since that time, a plethora of research has been 

done on the BEM, with annual conferences being held (Brebbia, 1984). 

Banerjee (1979, 1982, and 1984) has been the principal editor of a number 

of volumes dealing with the latest developments in the BEM and its 

applications. 

Applications to groundwater 

The BEM's initial use in groundwater problems was somewhat limited 

as it was only able to solve steady-state problems with isotropic media. 

However, recent developments in the BEM have occurred which significantly 

broaden the scope of groundwater problems which may be solved. Banerjee 

et al. (1981) discussed the use the BEM for two dimensional problems with 

transient groundwater flow. Cheng (1984a) developed a method for 

calculating Darcy's flow with spatially varied permeability using the 

boundary integral equation method. His paper gave examples of Green's 

functions based on certain permeability distributions which could be used 

to fit field data and which would lead to the BEM solution. However, he 

only provided functions for one and two dimensional problems. 

The application of the BEM to seepage problems in zoned anisotropic 

soils was presented by Brebbia and Chang (1985). Their method broke down 

permeability into orthogonal tensors for homogeneous zones. When several 

different homogeneous zones were present within one problem domain, the 

method called for the formation of separate subregions having the same 

properties. Continuity and equilibrium were then maintained at each 

boundary between the subregions. If there were a large number of zones, 
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It could be more advantageous to use the FEM In this situation, although 

the authors claim to get better accuracy using the BEM. As the number of 

zones Increases, the BEM becomes more like the FEM, with the "mesh" 

becoming finer to define the problem domain. 

The use of the BEM with non-linear conditions, as would be encount­

ered In unsaturated groundwater flow, are still being examined by several 

researchers. Blaleckl and Nowak (1981) wrote on the use of non-linear 

material and boundary conditions In heat conduction problems, while 

Brebbla and Skerget (1984) discussed the use of Klrchhoff's transform to 

linearize non-linear material properties. The transform can be applied 

to both steady-state and transient conditions when only Neumann (spec­

ified flux) and Dlrlchlet (specified potential) boundary conditions are 

used. Rubin (1968) provided a similar use of the Klrchoff transform in 

an application to transient flow in partially saturated soils. 

Extensions of the BEM method for groundwater problems have also 

increased in the last few years. Tollkas et al. (1983) combined the BEM 

with non-linear programming techniques to manage and optimize the 

operation of an aquifer in Greece. They reported excellent results and 

great efficiency in the case of steady-state flows and homogeneous 

aquifers, but felt more work was required for transient problems and 

nonhomogeneous media. Kemblowski (1984) provided a BEM solution to 

simulate salt-water upconlng under the Smokey Hill River in Kansas. The 

model predicts the free-surface and the interface between fresh and 

saline waters due to changing boundary conditions. 
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Dillon and Liggett (1983) developed an ephemeral stream-aquifer 

model based on the BEM. It is a two dimensional vertical slice model 

capable of simulating a stream-aquifer system when they are hydraulically 

connected or disconnected and any transition between the two states. The 

model was successfully calibrated using data from a South Australian 

aquifer system. Shapiro and Andersson (1985) formulated a method for 

simulating steady-state flow in three-dimensional fracture networks using 

the BEM. The model treated the host rock as impervious and the fractures 

as surfaces where fluid movement was two-dimensional, Fracture Intersec­

tions were modelled as one-dimensional conduits. As opposed to other 

models dealing with transport through fractured media which consider 

average characteristics, Shapiro and Andersson's model considered 

discrete fractures. Although their model would be cumbersome to use in 

highly fractured rock, its application to simple fracture systems would 

be advantageous due to its numerical efficiency. 

Existing Computer Models 

An effort was made to determine the existence of any BEM based 

computer models. A computer search conducted in 1986 through the Holcomb 

Research Institute of Indianapolis, Indiana produces four computer 

groundwater models based on the BEM (Holcomb Research Institute, 1986), 

The institute maintains a data base of known computer models which deal 

specifically with groundwater. Since that initial search, a recent 

reference on the BEM (Mackerle and Brebbia, 1988) has been published. In 

it, some 135 computer models which use the BEM to solve various types of 

problems are listed. As evident from these figures, the use of the BEM 
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has increased considerably in recent years. Of that 135 however, only 

eleven were targeted for micro-computer use and of that eleven, only 

three dealt specifically with potential problems. Of those three, none 

listed any capabilities for including interior sources or sinks, multiple 

zones, or the solution of flux at interior points. Only one of the 

models listed the capability of solving for interior potentials. What is 

evident here is that only a small percentage of the programs available 

for micro-computer use are tailored for groundwater flow problems, and 

that their capabilities are limited. Although many capable potential 

flow programs exist on mainframe computers, the existence of comparable 

BEM programs on micro-computers is lacking. 

Conclusions 

As can been seen, the use of the boundary element method for the 

solution of groundwater problems is well established. Its advantages 

make it well suited to solving complex groundwater systems with a minimum 

of input data generation and computational effort. Although many main 

frame computer models based on the method exist, a relatively small 

number with limited function are available for micro-computer use. The 

need for a micro-computer program which is easy to use yet capable of 

handling a broader assortment of groundwater problems exists. 

A second need also becomes evident with a review of the BEM 

literature. Unlike its numerical predecessors, the FDM and FEM, scant 

literature exists for the BEM which deals with the actual programming 

techniques required to use it. This occurs in spite of the large number 

of publications dealing with the BEM. Many references present the 
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theory, but moving from theory to actual application is often difficult. 

The need exists, therefore, for a general purpose groundwater model which 

makes use of the BEM, but which can also be used as a tool in illuminat­

ing various means of implementing the BEM on a micro-computer. 
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MODEL DEVELOPMENT 

This discussion presents the development of the BEM for steady-

state flow in a saturated porous medium. It starts with a review of the 

basic equations for groundwater flow. Following this will be an overview 

of the basic theories behind the boundary element method (BEM) for 

potential problems. Finally, the details of applying the BEM to ground­

water problems are presented. This final section shall also discuss the 

actual implementation of the BEM using a micro-computer. 

Darcy'e 

Microscopically, the actual process of fluid flow through porous 

media is an extremely complex one. A fluid flowing in such a medium is 

forced through pores of varying diameter and connectivity. Because of 

this complexity, the actual determination of such flow usually requires 

that one look at the process macroscopically and ignore the microscopic 

details (Hillel, 1982). 

During an investigation of fluid flow through sand filters, the 

French engineer Henri Darcy noted the following relationship: 

Basic Groundwater Equations 

V K 7$ (1) 

where 

« 

V 

K 

V 

- seepage velocity, 

- hydraulic conductivity, 

- gradient operator, 

- potential function. 
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The potential function, * is defined as: 

* - + z. (2) 

where 

p - pore water pressure, 

p - fluid density, 

z - elevation above some datum. 

Conservation of mass 

Conservation of mass for steady-state porous media flow neces­

sitates that the rate of fluid flow into any saturated volume be the same 

as the flow rate out (Freeze and Cherry, 1979). By assuming that the 

compressibility of the medium and the fluid are relatively small the 

equation for the conservation of mass can be stated mathematically as: 

- 0-

Substitution of Darcy's Equation 1 into Equation 3 yields the flow 

equation for anisotropic porous media flow: 

.'î# .*2|l 

If the medium is isotropic, then 

is homogeneous, then K(x,y,z) - constant. 

Laplace's equation, or: 

- Ky - Kz" 

Equation 4 

Also, if the medium 

then reduces to 
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(5) 

Laplace's equation Is valid for steady flow in either confined or uncon-

fined aquifers. By the use of adequate boundary conditions, it can 

satisfactorily model many groundwater situations. 

Sçwggg W ginks 

For large scale groundwater modeling, wells are often idealized as 

sources or sinks (Liggett and Liu, 1983). Fluid enters or leaves the 

medium from a point. To incorporate this, the equation of conservation 

of mass (Equation 3) is modified to include a source term: 

(Xk.yjj.Zk) - coordinate of kth source, and 

5(p) - Dirac delta function, zero for pMO and one for p-0. 

Intsr-sonal spmpetitil&ty 

Whenever two zones with differing hydraulic properties meet along a 

common boundary, certain conditions exist along that boundary. First, 

the potential $ at any point along the boundary between two zones is the 

same for either zone. Second, continuity across the boundary is main­

tained. The flow -Kdi/dn across a common boundary leaving one zone is 

the same as the flow entering the adjacent zone (Cheng, 1984b). Taking 

(6)  

where 

Ng - number of sources, 

Qĵ  - flow rate at kth source (out - positive), 
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advantage of these relationships allows one to solve for boundary values 

on the Interface which would otherwise be indeterminant. 

Development of the Boundary Element Method 

To apply the BEH to groundwater problems, two concepts must be 

introduced. They are Green's second identity and the concept of funda­

mental solution. This development follows that of Liggett and Liu (1983) 

and Brebbia (1978). 

Green's second identity 

Green's second identity is the primary foundation for the BEM. For 

an understanding of this identity, one must start with the divergence 

theorem. This theorem states that: 

1 (7-V) dfl - f V-n dr (7) 
Jq Jp 

where 

V - some differentiable vector function, 

0 - domain of integration (volume in 3D, area in 2D), 

n - outward unit normal vector, and 

r - domain boundary (area in 3D, line in 2D). 

It should be noted that V»V - div V. Another way of looking at the 

divergence theorem is to consider some fixed volume within a porous 

media. Imagine that fluid is either entering or leaving this volume 

through its boundary and that the density of the fluid within that volume 

is changing accordingly. With this in mind, one can regard the left-hand 

side of Equation 7 as the rate of change in fluid density within the 

volume while the right-hand side is the amount of fluid mass per unit 
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time which is passing through the boundary of the volume to effect that 

density change (Kaplan, 1984). 

To derive Green's second identity from the divergence theorem, one 

defines V as AVB, where A and B are twice differentiable scalar functions 

in the domain 0. Substituting this into Equation 7 produces; 

I (7AVB + A7^B)dn - | AVB-ndT. (8) 
Jq J] 

Redefining V as B7Â produces: 

(7B-7A + BV~A)dO - I BVA-ndT. (9) f (7B.7A + BV̂ A)dn - f I 
Jq Jp 

Finally, subtracting Equation 9 from Equation 8 forms Green's second 

identity, or: 

(AV'̂ B - B9̂ A)dO - I (AVB - BVA)-ndr. (10) f (A7̂ B - B7̂ A)dn - f 
JQ J] 

The final step In applying Green's second identity to saturated 

porous media flow problems requires that the functions A and B satisfy 

Laplace's equation, i.e. V̂ A - 7̂ B - 0. Since the product of the 

potential function and constant conductivity for isotropic media 

already satisfies Laplace's equation (Equation 5), it can be assigned to 

A. The function B is assigned a fundamental solution of Laplace's 

equation. A fundamental solution is simply some function which satisfies 
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the field equation. In potential theory the fundamental solution is 

called a free space Green's function (Alarcon et al., 1979) and will be 

denoted as This function satisfies Laplace's equation everywhere but 

at a singular point S(x), where it goes to infinity. Substituting ̂  and 

X* into Equation 10 and noting that - 0 leaves: 

1 - 7̂K#) ndT - 0. (11) 
Jr 

The dot product n represents the flow velocity normal to the 

boundary, or in differential notation dX4/dn. The dot product V# n 

represents the normal derivative of the fundamental solution at the 

boundary . A shorthand notation for these normal boundary derivatives 

shall be and for the potential function derivative and the funda­

mental derivative, respectively. It is important to note that the 

conductivity K is included in the normal derivative for $, such that the 

flux boundary shall be in terms of normal flow and not normal flux. With 

this notation, Equation 11 becomes: 

f ##')dr - 0. (12) 
Jr 

The form of the free space Green's function, or varies depending 

upon the dimensionality of the problem. For two-dimensional problems, 

 ̂- In r, where r is the distance from the singular point S to some other 

point on the boundary. In three-dimensions, ̂  - 1/r. For a complete 

derivation of the two and three dimensional fundamental solutions, the 

reader Is referred to either Brebbla (1978) or Liggett and Liu (1983). 
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For the remainder of this discussion however, only the two-dimensional 

case shall be considered. 

Since the fundamental solution ̂  Is singular at the point S, the 

point S must be excluded from the domain 0 of the problem in order to 

carry out the integration In Equation 12. To do this, the singular point 

S is surrounded by some inflnlteslmally small "shell" of radius 

Isolating it from the rest of the domain, thus creating a multiply 

connected domain. Equation 13 shows this as: 

J(J:«̂ (ln r) - (In r) #')dr + llrajdr^g d̂n r̂ ) - (In r̂ ) *')dr - 0. (13) 

o 

Graphically, this can be seen in Figure 1. 

Domain boundary 

Singular point S 

Domain 

Figure 1. Boundary integration of domain 0 with singular point S 

The two portions of the boundary integral running into the domain 

and connecting the actual boundary F and the inflnlteslmally small shell 

7 surrounding point S cancel one another out. They therefore do not 



www.manaraa.com

18 

appear in Equation 13. The limit of the second term of Equation 13 as 

goes to 0 is Equation 13 then becomes: 

Figure 2. The singular point S moved to the boundary F 

The singular point S can be anywhere in the problem domain 0 or on 

the boundary F. In moving S to the boundary, one still excludes it from 

the integration by an infinitesimally small shell 7. However, Instead of 

being a circle, as in Figure 1, it becomes an arc whose subtended angle 

(a) is determined by the geometry of the surrounding boundary F as in 

Figure 2. The multiplier In in the right-hand side of Equation 14 is 

replaced by a or; 

J (X#̂ (ln r) - (In r) *')dr - 2*K*(S) (14) 

Domain 

Singular point S 

^ Domain boundary 

(X$TT(ln r) - (In r) $')dF - aK$(S) (15) 
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The value of # can be calculated at the point S using either 

Equation 14 or 15, depending upon the location of 5. However, in their 

present form, neither equation can be used directly in the calculation. 

This Is because the necessary values of * or *' are not known everywhere 

on the boundary in a well posed problem. These missing boundary values 

must be calculated before either equation can be applied. Also, the form 

of Equations 14 and 15 requires analytical Integration around the 

boundary, which for most problems is impossible. These problems are 

addressed in the next section. However, once all of the boundary 

conditions are known everywhere on r. Equation 14 can be then be used to 

find the values of $ or its directional derivatives anywhere in the 

problem domain Q. 

General solution technique using the BEM 

Since in a well posed problem neither $ or #' are known everywhere 

on the boundary F, a means must be available for calculating them before 

interior values in the domain can be found. The BEM provides Just such 

means through Equation 15. This process Involves moving the singular 

point S to the boundary and applying the equation at various points 

around P. In order to use Equation 15, however, certain assumptions must 

be made about the boundary and its condition. 

Discretization First, the behavior of the functions which make 

up the boundary conditions for the problem must be defined. This 

involves identifying where and what type of boundaries exist in a 

specific problem. The boundaries most commonly encountered in porous 

media flow problems are Dlrichlet, or specified potential, and Neumann, 
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or specified flow, boundaries. These boundaries shall be denoted by 

and Fg, respectively. The boundary must be discretized into elements 

which must be placed so as to adequately describe the boundary geometry 

and conditions. This discretization oftentimes occurs at changes in a 

boundary type, or possibly at a geometric transition or comer. 

These boundary elements may be defined by either single or multiple 

points, called nodes, along the boundary. The nodes may be either in the 

interior of an element or at its ends. The number of nodes which are 

required to completely define a boundary element depend upon the type of 

element which is being used. What is important at this point is to 

realize that instead of applying Equation 15 over the entire boundary 

analytically, the boundary will be segmented and the equation applied to 

each segment. The specifics of boundary discretization will be discussed 

later. 

Shape functions Once the boundary is suitably discretized into 

elements, an estimate of the behavior of the boundary functions across 

each element is made. This approximation of boundary function behavior 

is called an shape function, or Interpolation function, and will be 

denoted as M. Each node in an element is assigned a shape function which 

relates its nodal value to all other nodal values for the element. These 

shape functions vary as to order (i.e., constant, linear, quadratic, 

etc.). It is this order which determines the number of nodes which an 

element needs to be totally described. The types of elements may be seen 

in Figure 3. 
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Shape of boundary values at element 

Constant shape function 

Linear shape function 

Quadratic shape function 

/ \ 
Node Element 

Figure 3. Examples of element shape functions 

The elements themselves may be straight or curved, in order to best 

describe the geometry of a particular problem while the shape functions 

may be of any order which adequately describes the behavior of the 

boundary conditions across that element. In a groundwater problem, these 

boundary conditions are usually either prescribed potential ($) or flow 

($'). Figure 3 shows straight elements with three different orders of 

shape functions, represented by the shaded areas above each straight 

element. The locations of nodes shown in each element in Figure 3 are 

not fixed. As long as there are enough nodes for the type of element 

being prescribed, and as long as the location of the nodes is accounted 

for in the definition of the shape function, the nodes may be placed 

anywhere in the element. 
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The standard element used for the remainder of this discussion and 

which Is the basis for the computer model GWBEM will be a straight, two-

node boundary element using a linear shape function. The reason for this 

Is two-fold. First, the remainder of the derivation of the BEM using 

linear shape functions Is complete enough to cover the Important aspects 

of the technique without hindering the novice with excessive details. 

Secondly, the quality of data most often available for groundwater 

problems Is Insufficient to warrant the use of more complicated elements. 

Boundary solution To calculate the unknown boundary data using 

the BEM, the boundary must be completely dlscretlzed Into elements as In 

(Field point) 
n = node 

(n) = element 

(3) (4) 
3 

( 2 )  
(5) 

( 1 )  

Singular point S 
(Base point) 

Figure 4. Example of boundary discretization with linear elements and 
base and field points 

Figure 4. Equation 15 Is then applied at each point around the boundary. 

The r Is the distance from a "base" point S on the boundary to some 

"field" point. Each node on the boundary serves In turn as a base point, 

with the remaining nodes serving as field points for each base point. 

This generates a set of equations. With each of the resulting equations 
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relating $ to at every node on the boundary, and with either $ or 

being known at each boundary node, there are as many equations as 

boundary unknowns. This creates a solvable system of equations whose 

solutions are the unknown boundary values at each point on the boundary. 

A problem develops during the integration around the boundary when 

the base point and the field point coincide. Since r - 0 in this case, 

the first term of the left-hand side of Equation 15 must receive special 

treatment. With the base point Isolated from the domain by a small 

circular segment 7 of radius as in Figure 2, the first term of 

Equation 15 becomes: 

J $̂ (ln r) (-l)r̂ df - -a$. (16) 
7 "'7 •'0 o 

This is obtained by differentiating the In r term with respect to n 

and transforming the integral to polar coordinates. This means that 

during the assembly of the system of equations, which will be discussed 

in further detail in the next section, the contribution of the base point 

to itself is the value of -a at the base point. For a smooth section of 

boundary, this value is -n. A smooth boundary section is simply a 

straight line through the point. 

Two-dimensional BEH with Linear Elements 

This portion of the discussion of the BEH parallels that of Liggett 

and Liu (1983). Their approach was the most workable of all the methods 

investigated, both In terms of illuminating the intricacies of the BEM 
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and in making the programming of the method more intuitive. Extensions 

to their method were required at various steps in the programming 

process, which shall be discussed as they appear. 

Base point 

Boundary element 

Figure 5. Linear element showing local coordinate system ( and 17 and 
boundary value ̂  

Linear slementp 

A typical linear element is shown in Figure 5. The element is made 

up of two nodes located a distance L apart. For the purposes of this 

discussion, the nodes shall be located at the ends of the element, 

although as noted previously, this is not required. The nodes are 

denoted as J and J+1 respectively. The local coordinate system for the 

boundary element consists of two components: ij, which is the normal 

distance to the element from the base point 5; and Ç, which is as shown 

in Figure 5. The 0 shown in the figure is the angle the element makes 

with the global x direction. A general scalar boundary function ̂  varies 

linearly across the element. Each nodal value of 4 Is identified by a 
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subscript, with the Intra-element values of ̂  being defined by the 

equation shown In the figure. 

To derive the shape functions Mj and for a linear element, the 

unknown coefficients Cĵ  and C2 need to be found In terms of the nodal ̂  

values and the local coordinate Segerllnd (1984) developed these 

coefficients as: 

tjimLÎpii 

Ĵ+1" 

=2" 
fj+i' 

(17) 

In Segerllnd's derivation, these coefficients were substituted into the 

equation for ̂  in Figure 5, L was substituted for (, and terms 

were rearranged producing: 

0 -
ff+l" ( (i #4 ^ ' L * J+1 

(18) 

In Equation 18, each nodal value of ̂  is multiplied by a linear 

function of These functions are the shape functions Mj and for 

the nodes J and J+1, respectively. To produce the proper value of ̂  

everywhere on the element, the shape functions must have certain proper­

ties. First, the shape functions for each element node must sum to one 

at any location ( on the element. Second, the value of a shape function 

must be unity at its respective node and zero at any other nodes on the 

element. Both of the multipliers shown in Equation 18 exhibit these 

properties. 
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Equations for boundary solution 

For any linear boundary element with nodes at the ends, Liggett and 

Liu (1983) used a rearranged form of Equation 18 to describe the linear 

approximation for the boundary potential $ as: 

, . I'*W * "l-H*!" (19) 
«j). 

The approximate normal derivative #' is: 

The integral equation for each element, based on Equation 15, is of the 

form: 

ffj+irk$ V J { ,  It- "âT" • *'̂ "^1 
(21) 

Substituting the linear approximations for $ and from Equa­

tions 19 and 20 into Equation 21, a series of integrations are performed 

which produce a set of equations relating the base points 5̂  on the 

boundary r to each pair of field points J and J+1 defining a boundary 

element. The terms associated with the nodal values of $ and are 

collected to form: 
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where ; 

1*11 "• ["̂ ll+fj+1̂ 12 l̂l'̂ Ĵ 12̂  
(23) 

1*2! " ["̂ 21*fj+1̂ 22 2̂l'̂ Ĵ 22̂ ' 

The I terms found in Equation 23 are integrals and are discussed in 

the section on the micro-computer implementation of the BEH. The 

terms in Equations 22 and 23 should not be confused with the K term used 

for hydraulic conductivity. By applying Equation 22 to each element on 

the boundary and summing up all the element integrals for each base 

point, one obtains a set of simultaneous linear equations of the form: 

"  ̂ (24) 

where : 

hj' 1 i-j 
(25) 

The R coefficients shown in Equation 24 relate to the boundary 

conditions and the L coefficients are associated with the r2 boundary 

conditions. These coefficients can be assembled into a system of linear 

equations with the knowns on one side and the unknowns on the other, 

forming: 
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Ax - B (26) 

where : 

A - coefficient matrix of unknown boundary values from each 

boundary node, 

X - unknown boundary conditions ($ or $' ) for each boundary 

node, and 

B o summation of product of integral coefficients and known 

boundary values for each node on the boundary. 

System assembly and solution 

Equation assembly The placement of the coefficients R and L 

from Equation 24 into the system matrices depends upon the type of 

boundary encountered at each element. If the known boundary condition at 

an element is a Dirlchlet boundary (F^), then the integral coefficients R 

for that element are multiplied by the known nodal potential values $ for 

that element and are placed into B. The integral coefficients L are then 

placed into A without being multiplied by any nodal values as these are 

unknown. 

The reverse is true if an element is a Neumann boundary (r̂ ). In 

this case, the L coefficients for the element are multiplied by their 

respective nodal flow velocity values, . These products are placed 

into B while the R coefficients for the element are placed into A. A 

accumulates the coefficients R or L without any multiplication by 

boundary values. B, on the other hand, always receives the integral 

coefficients after they have been multiplied by some known boundary 

values. 
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Each row of A and B has a matching boundary node. The row Index i 

refers to each boundary node as It serves as base point for boundary 

Integration. Each column of A corresponds to an unknown boundary value, 

or degree of freedom (DOF). As each element Is Integrated using Equation 

21, the node numbers J and J+1 of the nodes defining the element being 

integrated become the colrmn indices of A since there is one DOF for each 

boundary node. 

4 

( 2 )  

iBase point 

A B X 

(Unknown coefs.) (Known coefs, ) 

Figure 6. Placement of integral coefficients into system equations 

Figure 6 depicts the assembly of an example system. In the figure, 

node 1 is the current base point for the discretized boundary integra­

tion. With node 1 as the base point, all of the integral coefficients 

#1 n n found using Equation 21 during the discretized boundary 

integration are placed somewhere in row 1 of either A or B. As is also 
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shown in Figure 6, the integration is being performed on element 2, which 

is a boundary and whose end nodes are 2 and 3 respectively. 

The integral coefficients L corresponding to the boundary DOFs at 

each node of element 2 are added into A. The coefficient for node 2 with 

node 1 as base point (Î  2) is added into A at row 1 and column 2. The 

coefficient for node 3 with node 1 as base point (L^ 3) is added into A 

at row 1 and column 3. Consequently, the integral coefficient 2 Is 

multiplied by #2» with the resultant product added to row 1 of B. The 

same thing is done for #13, except that *3 is the multiplier. This 

product is also added to row 1 of B. 

Each column within A is accessed twice during the integration from 

each base point. This is because as the integration moves around the 

boundary, each boundary node serves first as the trailing node for one 

element and then as the leading node for the following element. 

Equation solution Once a complete boundary integration is 

performed using each boundary node as base point and the integral coeffi­

cients from each integration have been properly assembled into the system 

equations, the system unknowns can be obtained using any standard 

equation solver. The system solver used in GWBEM is adapted from 

Forsythe, Malcolm, and Moler (1977). Their method contains two steps, 

decomposition and back substitution. The Pascal listing of this may be 

seen in the procedures DECOMP and SOLVE of unit B7S0LVER.PAS in Appendix 

A. The decomposition step performs the Gaussian elimination, which is 

dependent on the matrix only. This is advantageous as the system matrix 

is based solely on the problem geometry. The multipliers and pivot 
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information from the decomposition are saved and can be applied to any 

right-hand side, allowing for the solution of different sets of boundary 

conditions for a given geometry from only one decomposition. The decom­

position routine also provides the condition number of the system matrix. 

The condition number is a measure of the singularity of the system 

matrix. The higher the condition number, the more ill-conditioned the 

system matrix. 

Equations for interior solution 

Once all the values on the boundary are known, it is then possible 

to obtain the solution at points In the Interior of the domain 0. 

Liggett and Liu (1983) also derived analytical integrations for the 

solution at interior points with the BEM, using Equation 14. To obtain 

the potential $ at any interior point, one simply integrates around the 

boundary using the selected interior point as base point. However, since 

all of the boundary values are known at this point, one generates a 

single equation for the value of 9 at the base point based upon Equation 

21. This may be repeated for as many interior points as desired. 

The solution for flow velocity values at interior points Is not as 

straight forward as those for potential at interior points. The flux 

value solutions Involve differentiating Equation 14 with respect to the 

desired direction of flow. The equations for flow velocity In the x and 

y directions are; 

+ Mi£22i:2âiaîl„ + {cos,.,sin,,,jar (g,, 



www.manaraa.com

32 

M2£22|+iaMijf« + 2£2S£±i2iS£#»jdr (28) 
r r 

where : 

n & ( - local coordinates as defined in Figure 5, 

f - angle element makes relative to global x direction, and 

r - distance from base point to field point. 

The use of Equations 27 and 28 for the determination of interior 

flow velocity values is similar to that for interior potential values. 

For each Interior point where the solution is desired, a boundary 

integration is performed using each interior point of interest as base 

point. The specific form of the integrals is somewhat different for the 

flow velocity values than it is for the potential solution. Their form 

is discussed in further detail in the next section. 

This section shall continue the derivation of the BEM by presenting 

the computer implementation of the methods discussed in the previous 

section. References will be made throughout to the Pascal listing of the 

computer program GWBEM found in Appendix A and which is the result of 

this work. All of the integrations used in this implementation are 

analytical. This was done to avoid excessive round off error found in 

many numerical Integration methods and to avoid numerical complications 

encountered during the integration of certain singular integrals found 

throughout the BEM. 

Micro-computer Implementation 
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Boundary solution 

To solve for the boundary unknowns, the I coefficients found In 

Equation 23 and subsequently the terms In that equation need to be 

calculated. To derive the coefficients, one takes the linear approx­

imation of $ from Equation 19 and substitutes It into the first term of 

Equation 21. This produces: 

•J+1 
9 Br 

i -

V+1 

(29) 

Rearranging terms as in Equation 23 and substituting L for the 

and I]_2 coefficients take on the form: 

1̂1- L 

"J+1 
1 ̂  

31? 1 ( df 

:i2-

"J+i 

. I *' 

(30) 

Performing these integrations yields; 

1̂1 -

^12 " 

•7̂  ln(»7̂  + r) 

2~L 

'J+1 

tan 
"i 

'J+1 

(31) 
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where + ç2jl/2 jĵ g been substituted for r. The values of are 

then calculated from the I coefficients with the use of Equation 23. 

The l2j| coefficients used to find the terms In Equation 23 are 

derived In a similar manner. Substituting the linear approximation of 

from Equation 20 Into the second term of Equation 21 yields the 

coefficients as: 

, 1 
2̂1" — 

, 1 

•J+i 
Inr̂ Ç df 

"J+1 

Inr̂  d(. 

(32) 

The Integrated form of these coefficients is: 

+ f2)lln(q2 + (2).ll 

2̂1 hr̂  ' 

'J+1 

(ln(q2 + (2).2(+2qjtan' 

2̂2 • 2 L 

1 

"i 
<J+1 

(33) 

Once the terms are found for each element, they are assembled into the 

system of equations as discussed above. The Pascal listing for the 

integrations discussed above are contained in the procedure Integrate 

Boundary of the unit B7INT.PAS found in Appendix A. 
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What ultimately emerged while working with the equations for the 

BEM using linear elements was a recurrent pattern of basic formulas for 

both the boundary and Interior solutions. Liggett and Liu (1983) 

provided many of the analytical Integrations used with linear elements 

for the BEM. These Integrals were checked and modified for use In GWBEM 

and are shown in Table 1. It should be noted that the Integrations In 

the table were found by first substituting (iĵ  + ̂ 2)1/2  ̂in each 

Table 1. Basic formulas encountered with the BEM using linear elements 
and adapted from Liggett and Liu (1983) 

Form I: J —̂  d( -tan 

Form II: J dÇ In (tt̂ + f̂ ) 

Form III: J —̂  d$ - (f - % tan ) 

Form V: f d$ - - —̂«-
J r 2(r, + r) 

Form VI: J Of - " 

Form VII: j -1- f In r d$ - -1- (?%+ (̂ ) [ln(i7̂ + ̂ )̂-l] 

Form VIII;J -1- In r df - ln(iĵ + $̂ ) - 2( + 2ijtan'̂ |̂ ĵ 
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equation. By utilizing the formulas shown in Table 1, the derivation of 

the other equations for the BEM becomes much simpler. These basic forms 

shall be used where applicable in the following derivations. Each of the 

formulas found in the table and which are used in subsequent equations 

shall be referred to by its Roman numeral listed in the table. 

Inter&pr aolytlen 

The equations used In the computer Implementation of the BEM for 

the solution of $ in the interior of the domain are identical to Equa­

tions 31 and 33, which generate the I coefficients used in Equation 22. 

Equation 22 is applied to every element on the boundary while the 

interior point of Interest is used as base point. 

For the calculation of the interior flow velocity values, one sub­

stitutes the linear approximation of $ (Equation 19) and (Equation 20) 

into Equation 27. The terms can then be rearranged and Integrated so 

that the form of the equation resembles Equation 22, with coefficients 

are multiplied by the nodal values of $ and on the boundary, or: 

where w Is any direction in which the flow velocity Is to be calculated 

and where the K' terms are defined as: 

(34) 

[  " - ^ 1 J .  1  • ^ 1 0  •  IV'^J+VW ^11 Sj^l2 

[-I3I+ Igg + fj+l(̂ 32' ̂ 34) ' ̂ 31' ̂ 33* fj("̂ 32* "̂ 34̂  ̂J+V-^32 •'34 
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Using this form, the Interior flow velocity values In any direction 

may be obtained by substituting the I terms with their proper values for 

that direction. For the flow velocity values in the x and y direction, 

the values for I are those shown in Table 2. 

Table 2. I coefficients for flux in the x and y directions 

I term Flux X direction Flux 7 direction 

1̂1 slnf(II) -cosg(II) 

1̂2 sln*(I) -costf(II) 

2̂1 2qcosf(VI) 2qsinf(VI) 

Hi 2fjcostf (V) 2nsinf(V) 

2̂3 2q2sln*(V) 2fĵ costf (V) 

l24 sintf(III) cosfl(III) 

3̂1 cosg(III) slng(III) 

3̂2 cosg(II) sintf(II) 

. ̂33 qsin*(II) lycostf (II) 

:34 %sin*(I) fjcostf (I) 

The Roman numerals found in Table 2 refer to the basic formulas 

listed in Table 1. As such, each formula is multiplied by the terms 

shown to produce the I coefficients used in Equation 35 and ultimately in 

Equation 34. The in the table is the normal distance to each element 
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from the base point, as defined In Figure 5. f Is the angle each element 

makes with the x axis. The Pascal listing of these equations Is found In 

procedure Integrate Interior of Unit B7INT.FAS of the program GWBEH found 

in Appendix A. 

S9wçgg W sinkg 

Problems with wells require special techniques during the assembly 

of the equations for the boundary solution. As discussed previously, 

wells can be idealized as sources or sinks where the flow enters or 

leaves the domain through a point. Equation 6 shows the modification to 

Laplace's equation used to accommodate this. 

Lafe et al. (1980) proposed a method of superposition to accom­

modate sources or sinks in the interior of a domain using the BEM. 

Unfortunately, the treatment allowed only for the solution of potential 

at a point with flow as the known value. It was desired that GWBEM allow 

either type of condition to be specified at a point. Therefore, a 

technique advanced by Radojkovic and Fecarlc (1984) was used for the 

solution of domains with wells. 

Their method Involves including terms for each well point into the 

system of equations normally generated with the BEM for the boundary 

solution. The basic form of the terms added for each well point is 

In(rj), where rj is the distance between the well node J and some other 

node, either on the boundary or in the interior of the problem domain. 

The placement of each term in the system of equations depends upon the 

type of condition specified for each well node. 
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If the flow rate Qj is specified at a particular well J, then the 

product of Qjln(rj) is subtracted from the known vector B. The row of B 

corresponds to the base point from which the boundary Integration Is 

performed. Conversely, If the potential Is specified at a well, the 

value ln(rj)JC Is added to A at the row matching the base point of 

Integration and the column coinciding with the node number of the current 

well node. 

GWBEM considers well points as additional, yet separate, boundary 

nodes. For example, if a problem boundary was dlscretlzed using five 

boundary nodes and If two wells were found in the problem interior, there 

would be a total of seven boundary nodes defining the problem. The total 

size of A would then be 7x7. GWBEM also considers flow out of the 

domain as positive. Therefore, a pumping well would be defined positive, 

and an injection well defined as negative. 

Boundary values The inclusion of each well node into the system 

of equations during the solution of the unknown boundary values is 

carried out in procedure Integrate Boundary of GWBEM. In the loop which 

performs the integrations over the regular boundary using Equation 21, 

the presence of well nodes is checked. If well nodes are found in the 

problem domain, the ln(r) terms which account for the contribution of 

each well node are added to the system of equations at the end of each 

integration loop around the continuous boundary. 

After all of the regular nodes on the continuous boundary have been 

used as base point for a boundary Integration, another loop is entered 

which Integrates from each well node to every other boundary node. 
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Including any other well nodes. During the Integration from each well 

node to the nodes on the continuous boundary, the value of a for each 

well node is 2ir and Equation 21 is applied as usual. While integrating 

from one well node to another, the values added to the system of equa­

tions are identical to the ln(r) terms. One exception should be noted 

which occurs when the well node acting as base point becomes the same 

point being integrated to. In this situation, r becomes the radius of 

the well rather than the distance to some other node. Since the wells 

are Included as boundary nodes, solution of the resulting system of 

equations not only produces the unknowns on the continuous boundary, but 

also the unknowns at the well nodes. 

Interior values Once all of the boundary unknowns are estab­

lished, including the unknown well values, the interior values at 

selected points can be determined using a modified form of the interior 

solution using no wells presented previously. The potential values are 

modified by adding the product Qjln(rj) for each well to the integral 

value for potential at each interior point found by the method described 

earlier for Equation 22. The variables of the additional product for 

each well are the same as for the boundary solution case. This operation 

is performed in the nested procedure AddSources in the global procedure 

Integrate Interior of unit B7INT found in Appendix A. 

The values for flow velocity at interior points also require 

modification when wells are present. The values of di/dx and d<t/dy are 

first determined using the method discussed previously for Equation 34. 

The results are then added to the products and (ryQj)/(r̂ ) 
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respectively. The values of and refer to the distance between the 

well and the selected interior point in the x and y directions. This 

summation is done for every interior point using all wells within the 

enclosed boundary. 

Multi-zone solutions 

The BEH described up to this point is capable of solving homo­

geneous groundwater problems. Many groundwater problems are, however, 

far from homogeneous. Brebbia (1978) and several others have discussed 

methods of analyzing non-homogeneous media using the BEM. Their approach 

has been to divide the media up into zones of differing characteristics. 

In the case of groundwater flow, these zones would differ as to their 

hydraulic conductivity. The program GWBEM approaches non-homogeneous 

problems in a similar manner. Figure 7 shows a two zone system with a 

shared boundary. 

Common boundary (interior) 

Exterior boundary 

Figure 7. Example problem with two zones of differing conductivities with 
common interior boundary showing zonal node numbering 
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The shared boundary between the two zones is designated as an inte­

rior boundary while the unshared boundaries for each zone are denoted as 

exterior boundaries. Each zone is treated as a separate domain whose 

boundary is discretized and integrated. Each zone is then coupled to the 

other zones to form one system of equations using the equilibrium and 

compatibility conditions across shared zone boundaries. 

Unfortunately, to maintain the advantages of the BEM over other 

analytical techniques, each of the different zones must be homogeneous 

within themselves. If any zones are non-homogeneous, then integration 

must be performed over the entire domain for each non-homogeneous zone 

rather than Just over their boundaries. A problem may have as many 

connected zones as desired, but each zone must be uniform throughout. 

Although simple in theory, the actual computer implementation of the BEM 

for multi-zone problems was found to be a formidable task for a number of 

reasons. 

First, in solving for a single zone system with the BEM discussed 

up to this point, there are as many boundary equations as boundary 

unknowns. However, with multi-zones sharing common boundaries, as in 

Figure 7, there are two unknowns for every point on the interior bound­

ary, namely $ and $'. If the boundary for each zone is integrated in the 

normal fashion, there will be more unknowns than equations because each 

node on the interior boundary will serve as base point once for each zone 

even though there are two unknowns associated with that node. 

To resolve this situation, what is usually done is to apply the 

equilibrium and continuity conditions for potential and normal flow at 
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the Interior boundary nodes. Liggett and Liu's (1983) application of 

these conditions generates two additional equations for each interior 

node, one for potential compatibility and another for normal flow 

equilibrium. This creates a solvable system, but at the cost of generat 

ing a larger system of equations. Since GWBEM is intended for micro­

computer use where memory is at a premium, the use of another method was 

preferable. An approach explored by Brebbia and Chang (1985) was 

therefore utilized in GWBEM. 

System assembly In their method, the compatibility and equi­

librium equations are accounted for by condensing the system equations 

during assembly. This involves having fixed columns in the system of 

equations for each shared unknown boundary DOF and having the integral 

coefficients accumulate in those fixed columns for each adjacent zone 

during the matrix assembly. The conditions for equilibrium and compat­

ibility are utilized at this point, depending upon the type DOF being 

operated on. 

Figure 8 shows the system matrix for the simple two zone system of 

Figure 7. As an example, node 5 of zone 1 is the same as node 2 of zone 

2. By the use of the compatibility condition, the Integral coefficients 

from each zone for the $ DOF at this shared node are placed Into the 

system matrix in column 5 after being multiplied by that zone's conduct­

ivity. The row each set of Integral coefficients is placed Into depends 

upon the base point and zone which is being Integrated. By the use of 

the equilibrium condition, the integral coefficients for the $' DOF at 

this node are placed in column 6. Since the normal flow out of zone 1 is 
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2 Zone 1 Zone 2 

Zone 1 

Zone 2 

1 2  3 4 5 6 7 8 9  1 0  1 1  

Figure 8. Assembly of system matrix for simple two zone system with 
shared boundary 

the same as the normal flow Into zone 2 at this common node, the sign of 

the Integral coefficients placed Into column 6 from zone 1 Is opposite 

that of zone 2. In other words, one of the two zones has a multiplier of 

-1 applied to Its Integral coefficients for the flow DOFs at the common 

Interior nodes. The resulting system matrix then has a row for every 

base point In each zone and a column for each boundary DOF. This system 

Is now In solvable form. 

Discontinuous elements Unfortunately, the problem of assembling 

multi-zone systems is not the only obstacle to solving them. Another 

problem occurs during the calculation of the unknown flow values on 

Interior boundaries. When the Intersection of two Interior boundary 

elements form a straight line at a common node as In the upper half of 

1 1 2 3 3 4 4 5 5 6 6  1 
2 P F P F P F P F  2 
3 
4 P = Potential 

0 3 
4 

5 5 
6 6 

1 
2 F = Flow 

7 
8 

3 0 9 
4 1 1 2 2 3 3 4 4  5 10 
5 P F P F P F P F  11 
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Straight intersection 

TT 

rr Normal flow leading ' 'Normal flow trailing 

(Equal) 

Corner intersection 

Normal flow leading Normal flow trailing 

(Not Equal) 

Figure 9. Normal flow at element Intersection 

Figure 9, izhe normal flow component at that node is the same on either 

side of the node. On the other hand, if the elements meet and form a 

comer as in the lower half of Figure 9, the normal flow components are 

not the same on either side of the common node for each zone. The normal 

flow component at the corner is actually not defined. This same problem 

of ambiguous normal flow also occurs when two boundary elements meet 

at a corner on an external boundary. 

These types of element Intersections at comers develop problems 

during the boundary Integration and system assembly. Normally, the 

integral coefficients from the leading and trailing elements for the flow 

OOF at a node (̂ 2) are placed in the same column of the system matrix 

because they represent the same flow DOF. However, with a corner node, 

these coefficients from the leading and trailing elements cannot be 
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placed Into the same DOF, or column, of the system matrix because they 

actually represent different flow DOF. One could lump the coefficients 

from each side of the node into one DOF, but this creates significant 

numerical errors in the vicinity of the corner (Patterson and Sheikh, 

1981). 

Zone 2 

Normal flow 
across boundary 

Zone 1 

Zone 3 

Boundary integration 

Figure 10. Junction of three zones meeting at common node and normal flows 
across zone boundary 

Figure 10 shows another problem which is encountered during the 

assembly of multi-zone systems. When several zones meet at a common 

node, the normal flow for the Junction node is not defined nor is it 

equal as one moves along the boundary of any zone and across the junction 

node. The assembly of the flow Integral coefficients for each zone Is 

also made more difficult by now having to determine which flow DOFs match 

across zone boundaries. A similar situation exists when moving from an 

exterior zone boundary to an interior boundary or vice versa. The normal 
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flow at the Junction node can be defined for several different directions 

at once. 

Continuous 

< 9 — — 0  F u l l y  d i s c o n t i n u o u s  

d — P a r t i a l l y  d i s c o n t i n u o u s  
(Leading) 

)K—0 Partially discontinuous 
(Trailing) 

0 Geometric node 

)K DOF node 

—> Direction of integration 

Figure 11. Continuous and discontinuous two-node linear elements 

Several methods were evaluated to resolve this problem of ambiguous 

normal flow at a boundary corner. The method Implemented In GWBEM was 

that of Patterson and Sheikh (1984), which make use of discontinuous 

elements. A discontinuous element Is defined as one where the geometric 

nodes defining the end points of an element and DOF nodes defining the 

boundary values do not coincide. Figure 11 shows different types of 

discontinuous linear elements and compares them with a continuous linear 

element. These elements allow for the normal boundary flow to be discon­

tinuous across an element Intersection, something which continuous 

elements do not allow. A discontinuous element, then, solves the problem 
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of ambiguous flow at a comer, but with a price. Because of the extra 

DOF needed to define them, their use requires another equation for each 

discontinuous element in a boundary. Also, the linear shape functions 

used to define the behavior of the boundary values for each element must 

be modified to accommodate the new interior location of the OOF nodes for 

the element. 

Patterson and Sheikh present linear shape functions for fully 

discontinuous and partially discontinuous elements. Unfortunately, their 

development is couched in terms of normalized natural element coor­

dinates, which is different then the coordinate system discussed pre­

viously for Figure 5. Normalized element coordinates have the origin at 

the center of the element and the end nodes at ± 1. This type of 

coordinate system lends Itself very well to numerical Integration 

routines. GWBEM, however, uses analytical Integrations and unnormallzed 

element coordinates. The shape functions provided by Patterson and 

Sheikh had to be modified for use in GWBEM. After performing a coor­

dinate transformation on the shape functions of Patterson and Sheikh and 

then substituting these transformed shape functions into Equation 21, new 

K terms for Equation 22 were found for each of the three types of discon­

tinuous elements from Figure 11. These are seen in Equation 36. 

The and I2 terms for these equations are the same as those 

defined in Equations 30 and 32. The L is the element length. The use of 

these new integral coefficients for discontinuous elements arises when 

elements are adjacent to flow ambiguities, i.e., corners or junctions. 

If an element has an ambiguous flow DOF at only one of Its nodes, then it 
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becomes a partially discontinuous element depending upon which end the 

indefinite node is on, and the proper K coefficients are then substituted 

for the regular ones used during matrix assembly. If both element nodes 

are ambiguous, then the element becomes fully discontinuous. During the 

boundary Integration, the DOF nodes become the base (collocation) points 

rather than the geometric nodes, as is the case for continuous elements. 

The limits of integration used in all of the integral equations for each 

element are still based on the element end points, however. 

(Fully discontinuous element) 

|*l| " ̂"Ẑ ll"'' ' L̂ ll" (2 

'̂1̂ 21'*' ïfj)̂ 22 ' 1̂ 21" ̂ 2 

(leading discontinuous element) 

|*l| " ̂"SL̂ ll"'" (3 3l̂ j)̂ 12 ' 31̂ 11" (3 (36) 

1*2! " ["31^21"*" (3 •*" ' 31̂ 21' (3 •*" 3L̂ Ĵ 2̂2̂  

(Trailing discontinuous element) 

1*11 • ̂"31̂ 11'*' 3Ẑ j)̂ 12 ' 31̂ 11' 

4 ['31̂ 21* 3L̂ Ĵ 2̂2 ' 31̂ 21" 3̂L̂ Ĵ 2̂2̂  

Model Input 

A great amount of effort was devoted to make GWBEH as easy as 

possible to use, particularly for those unfamiliar with the BEM. This 

involved keeping the data input to a minimum while allowing for an 
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adequate problem description. An attempt was also made to keep the 

output from the program as concise yet meaningful as possible. The 

program's utility as a tool in understanding groundwater flow becomes 

most apparent in a learning environment, as the normally cumbersome 

details of defining a problem for computer solution are performed by the 

program itself rather than by the user. This is in contrast to finite 

difference and finite element models where the entire domain requires 

discretization and where special techniques are often required, as in 

modeling the flow in the vicinity of a well. GWBEH frees the user to 

concentrate on the details of the results rather than the details of the 

input. 

Several different methods of describing the geometry and connect­

ivity of a multi-zone groundwater problem for GWBEM were tested in terms 

of ease of input and programming. The ultimate method used by GWBEM was 

developed from one advanced by Rudolphl (1988). The method consists of 

two tiers, a global tier and a local, or zone tier. All nodes and 

elements which define a problem boundary for all zones are specified on 

the global tier. At this level, the coordinates of all nodes making up 

the boundary are input and a unique global node number Is assigned to 

each boundary node. The elements are defined by specifying which global 

nodes correspond to the end nodes of each element and which type of 

boundary is found at each element, either r̂ , r2, or interior. Each 

element Is also given a unique global element number. There is an 

implied direction for each element which comes from the order in which 

the global nodes for each element are specified. If an element Is 
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defined as having global nodes 5 and 6 as end points In that order, then 

the Implied direction for that element Is from global node 5 to node 6. 

Once all of the boundary nodes and elements are defined globally, 

the problem definition moves to the local, or zone level. At this level, 

the elements which make up each zone boundary are Input. An ordered list 

is generated for each zone. This list contains the global element 

numbers defining a zone boundary. The order of the elements matches the 

order the elements come in as one moves around each zone boundary. Any 

element may be the starting point for the list as long as the succeeding 

elements are listed in order around the boundary. The sign on each 

element number in a zone list compares the relative direction of the 

clockwise Integration around the zone boundary with the implied direction 

for each global element. If the direction of integration and the implied 

element direction are the same, then the sign on the global element for 

that zone list Is positive. If the directions are opposite, then the 

sign on the global element is negative. This scheme provides the 

simplest means of describing a problem geometry as well as accounting for 

any connectivity between zones. By using global elements, any shared 

boundaries are easily identified in the computer program. 

Other problem characteristics are also defined at the zone level. 

These Include the hydraulic conductivity of each zone, the location and 

type of any wells contained in a zone, and the location of any interior 

points where the solution is desired. An example input listing for GWBEH 

may be found In Appendix B. 
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Model output 

The Input and output for the model is file based. This allows for 

the modification of output using any text editor and eases the importa­

tion of the model output into other analysis programs such as spread­

sheets or contouring programs. It has been the author's experience that 

programs which prevent this type of modification to their output to be of 

limited use. 

The output from the model consists of several blocks. The main 

output block is made up of several distinct sections. The first section 

is a formatted form of the input is repeated to allow for a check of the 

data. Following this, the boundary of each zone is traversed element by 

element. For each element, the coordinates and solution at the end nodes 

is listed. After the boundary node solutions are given, the solution at 

interior nodes for each zone is written. This information includes the 

local zone numbering of each interior node and the potential and flow 

vector values in the local x and y directions. All of this output block 

may be directed to either a printer or a disk file. 

Other output blocks are contained in text files. These include a 

listing of the system matrix generated during the boundary integration 

and separate files for the potential and flow values in the x and y 

directions at all interior nodes. Only the potential values for the 

boundary nodes are output in these files. 

Model features 

All of the routines and data structures used in the model GHBEM are 

unique and have been tailored to allow the most efficient use of the 
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micro-computer environment. This was done with a mix of fixed and 

dynamic data structures. The model makes extensive use of linked lists 

and virtual disk arrays. Model size Is therefore limited mostly by 

available disk space, although with the advent of large mass storage 

devices, this constraint will become less significant In the future. 

Currently, the model Is capable of running problems with approximately 

4000 boundary nodes and 1400 boundary elements on a machine equipped with 

640K of core memory, although future Improvements in micro-computer 

operating systems and operating speeds could Increase this amount 

dramatically. 

Manually determining which elements are discontinuous and which 

type of discontinuous element an element should be becomes a cumbersome 

task for large, multi-zone systems. The process usually is to analyze 

the problem boundary and manually designate each discontinuous element. 

Once the discontinuous elements are selected, several things must be done 

to each. First, the boundary values normally defined for each element 

end point must be altered to reflect the position of the new DOFs on the 

interior of the element. Then each new DDF must be included in the 

boundary integration. The assignment of the proper DOFs during the 

assembly process becomes very complex as the number of boundary nodes and 

the number of zones Increase for a given problem. This process takes a 

large amount of time and is a source of considerable error during problem 

input. 

One significant feature of the model is found in the routine Prep 

System of the unit B7PREF.FAS. This routine automatically checks each 
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zone boundary and determines which elements require conversion to 

discontinuous elements. It decides which type of discontinuous element 

should be used in each case, calculates the new boundary values at any 

interior DOFs assuming linear behavior, and assigns a proper DOF number 

for correct assembly of the system equations. This provides for more 

fool-proof use of the model for multi-zone systems which would otherwise 

provide many difficulties to a BEH neophyte. 
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MODEL VERIFICATION 

Test cases from several sources were used to verify GWBEM. These 

included simple problems where the analytical solutions were available 

and more complex problems where the FDM and FEM were used. Also, the 

results of problems solved using other models based on the BEM were 

compared with those from GUBEM. In each case, the results obtained using 

GUBEM were of equal or better quality than those from other methods or 

models when compared with theoretical results. Each of the test cases 

was run on an 8 MHz IBM AT compatible computer with 640K of memory, a 

math coprocessor, and a 32 megabyte hard disk. The time required to run 

the test cases is given for each. 

The first test case used to verify the model GUBEM is shown in 

Figure 12. Several BEM researchers have used this simple problem as a 

measure of the accuracy of their particular BEM models; Mitra and Ingber 

(1987), Patterson and Sheikh (1984), and Brebbia (1978) to name a few. 

To carry on in this ritual, GUBEM was also applied to this problem. 

Brebbia's initial solution was greatly improved by the use of double 

nodes at the corners. Mitra and Ingber's solution used extra collocation 

points at the corners to resolve flow ambiguities there. Patterson and 

Sheikh's solution used their discontinuous elements, the same type of 

elements used in special cases by GUBEM. Interestingly enough, due to 

the way GUBEM defines a problem, this simple test case did not require 

the use of double nodes, extra collocation points, or discontinuous 

elements by GUBEM to obtain a solution. The solutions from all sources 

used the same boundary discretization of twelve elements. 
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Flow = 50 
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(|) = 0 

Figure 12: Test case 1 - Simple flow problem thru a rectangular prism 
(after Brebbla, 1978) 
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Figure 13: Comparison of numerical solution of test case 1 by various 
authors to that of GWBEM 
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Figure 13 compares the results obtained from each source. GWBEH 

provided better results than either Brebbia or Patterson and Sheikh, and 

comparable results to those of Mitra and Ingber. Mitra and Ingber's 

method involved extra collocation points at the corners, which resulted 

in a larger system to be solved than that generated by GWBEH. These 

extra collocation points are required to be outside of the problem domain 

and generate an extra equation for each extra point used. Also, good 

results using this method are very dependent upon the proper placement of 

these extra points, something which would be difficult to do in an 

automated fashion as was desired with GWBEM. Although the test case was 

small, if a larger problem were used, GWBEH would use a significantly 

less amount of computer memory than Mitra and Ingber's method for 

presumably similar results. The total time required to solve this 

problem was 2.7 seconds. Test case 1 was also solved by GWBEM using only 

4 elements, or one element per side. The results were identical to those 

obtained from the twelve element discretization and matched the 

theoretical values exactly. 

For this problem, the main difference between GWBEM and the other 

researchers' models is in the approach to the boundary unknowns at the 

corners. In the other methods, it was assumed that there were ambiguous 

flow definitions at the corners which resulted in two corner flow 

unknowns. What GWBEM does is account not only for the geometry at the 

corners but also the boundary conditions. For the sample problem, since 

the flow is known to one side of every corner node and since the 

potential is also defined at each corner node, there is in fact one 
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unknown flow DOF at each corner. The system is assembled using this fact 

to produce an unknown vector which contains only those unknown flow DOFs 

at the comers. 

Test case 1 showed the validity of GWBEM in providing boundary 

solutions for a simple flow problem. Larger, more complex test cases 

with different boundary conditions were used to further test GWBEM. 

Franke and Reilly (1987) tested the effects of applying different sets of 

boundary conditions to a groundwater flow system. The different flow 

systems are shown in Figure 14. System 1 has a constant head boundary 

specified at both ends of the domain, while the head along the upper and 

lower boundaries are specified as a linear variation from the left 

boundary to the right boundary. System 2 again has the left and right 

boundaries specified as constant head, while the upper and lower 

boundaries are specified as no flow boundaries. System 3 differs from 

system 2 in that the left boundary is a specified flow rather than a 

specified head boundary. These three boundary condition systems were 

analyzed by Franke and Reilly in three different experiments for a total 

of nine cases. Experiment A used a K of 2.0 ft/day, experiment B used a 

K of 4.0 ft/day, and experiment C used a K of 2.0 ft/day but with a 

discharge well located in the center of the domain. The flow rate of 

this well was 100 ft̂ /day. In all cases, the flow was assumed confined 

and the medium was assumed to be isotropic and homogeneous. In all 

systems, the domain was 20 feet long and 8 feet wide. 

Franke and Reilly used a finite-difference, square point-centered 

mesh with 81 x 33 nodes to solve the three groundwater systems, a total 
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(|) = 100 - 5X System 1 

( 0 . 0 )  ( 2 0 . 0 )  

(no flow) 
////////// 

System 3 

Veil location for experiment C. 

Figure 14: Three different flow systems Investigated by Franke and Rellly 
(1987) 

of 2673 nodes. To actually solve for the unknown boundary values using 

GWBEM, a total of 28 boundary nodes were spaced equally around the 

boundary every 2 feet. Sixty Interior nodes were used to determine 

behavior of potential and flow In the Interior with GWBEM. Including the 

well node for the C experiments, the total number of nodes required by 

GWBEM to obtain results of similar accuracy to those of Franke and Rellly 

was 89. Comparing the number of nodes required to adequately model the 

flow systems using the two methods (2673 versus 89) shows that GWBEM 
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requires much less Input than the finite-difference model used by Franks 

and Rellly. It took an average of 19.3 seconds to solve for all of the 

boundary and Interior nodes for these problems on the test computer. 

The results obtained from GWBEH for the nine cases are shown In 

Figures 15 thru 23. These figures show the potential surfaces calculated 

from the boundary and interior nodes and the flow vector calculated for 

each interior node. In each figure the direction for the flow vectors is 

from the asterisks to the triangles. The asterisks mark the location of 

the nodes used to calculate the Interior values. The flow vectors in 

each plot are normalized so that the plots' maximum flow vectors are no 

longer than one tenth of the longest side of the flow domain. Based on 

the units of the problem, the units on the maximum flow vector shown at 

the top of each solution plot is feet/day. All other flow vectors are 

scaled accordingly. The value represented by the longest flow vector is 

given at the top of each figure. The potential value at each well is 

also listed in each of the figures for the C experiments. 

The potential surfaces shown in Figures 15 thru 23 compared very 

closely with those of Franke and Rellly. Direct comparison of the actual 

numerical results was limited to certain potential and flow values on the 

boundary and the heads at the wells in the C experiments, as these were 

the only ones provided by Franke and Rellly. The direct comparisons 

which could be made are listed in Table 3. Another check on the validity 

of the results come from a simple mass balance of each. All cases for 

flow systems A and B balanced exactly as to Inflow and outflow. The 

worst flow imbalance was found for the C flow systems and was 0.8 
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Table 3: Comparison of GWBEM and Franke and Rellly results 

Exp.̂  Head Inflow Head Inflow Inflow Head 
No. K (ft/d) Left Left Right Right Top/Bot. Well 

FRAl 2 100.0® 80.0 b b b 
GWAl 2 100.0° 80.0 0.0 -80.0 0.0 
% Diff 0.0 

FRA2 2 100.0° 80.0 b b b 
GWA2 2 100.0° 80.0 0.0 -80.0 0.0° 
% Diff 0.0 

FRA3 2 100.0 80.0° b b b 
GWA3 2 100.0 80.0° 0.0 -80.0 0.0° 
% Diff 0.0 

FRBl 4 100.0° 160.0 b b b 
GWBl 4 100.0° 160.0 0.0 -160.0 0.0 
% Diff 0.0 

FRB2 4 100.0° 160.0 b b b 
GWB2 4 100.0° 160.0 0.0 -160.0 0.0° 
% Diff 0.0 

FRB3 4 50.0 80.0° b b b 
GWB3 4 50.0 80.0° 0.0 -80.0 0.0° 
% Diff 0.0 

FRCl 2 100.0° 82.5 b -77.5 95.0 13.Od 
GWCl 2 100,0° 82.7 0.0 -77.32 95.42 13.2 
% Diff 0.24 -0.23 0.44 1.5 

FRC2 2 100.0° 130.0 b -30.0 b -7. d 
GWC2 2 100.0° 130.07 0.0 -29.93 0.0° -6.9 
% Diff 0.06 -0.25 1.4 

FRC3 2 38. d 80.0° b 20.0 b -38. d 
GWC3 2 37.4 80.0° 0.0 20.15 0.0° -38,1 
% Diff 1.6 0.74 0.26 

a FRxx - Franke and Rellly results, GWxx - GWBEM results, 

b not provided by Franke and Rellly. 

c specified conditions. 

d specified as approximate values by Franke and Reilly. 
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Figure 15; GWBEM results of USGS test case Al, K 
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Figure 16: GWBEM results of USGS test case Â2, K 
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Figure 17: GWBEM results of USGS test case A3, K 
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Figure 18: GWBEM results of USGS test case Bl, K 
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Figure 19: GWBEM results of USGS test case B2, K 
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Figure 20: GWBEM results of USGS test case B3, K 



www.manaraa.com

64 

8.00 

USGSC1 
Max. flow vector = 30.34 

Head at well = 13.2 

5.00 10.00 16.00 20,00 

Figure 21: GWBEH results of USGS test case CI, K 

8.00 

6.00 

4.00 

USGSC2 
Max. flow vector = 30,55 

Head at well = -6.9 

2,00 -

),00 5,00 10.00 15.00 20,00 

Figure 22: GWBEH results of USGS test case C2, K 
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Figure 23: GWBEH results of USGS test case C3, K 
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percent. The Cl experiment had a total calculated Inflow of 100.8 cfs/day 

balanced against a specified well outflow of 100.0 cfs/day. 

The interior flow vectors were calculated with GWBEH only, so that 

no direct comparison of the interior flow behavior could be made with the 

results of Franke and Reilly. However, the flow vectors found using 

GUBEH agree with the expected flow determined from the potential 

contours calculated with GWBEM. Overall, the numerical results which 

could be compared were identical. The C experiments were slightly 

different between sets, with the maximum difference being 1.5 percent. 

Many of the values provided by Franke and Reilly found in Table 3 were 

given as approximate only. The percent differences for these values are 

approximate and for rough comparison only. 

Table 4: Comparison of drawdown results for different well flow rates for 
C experiments 

Drawdown 
(ft) 

Well discharge 
(ft̂ /d) 

Flow system 
1 

Flow system 
2 

Flow system 
3 

FR 
GW 

1 0.37 
0.37 

0.57 
0.57 

0.88  
0 .88  

FR 
GW 

10 3.7 
3.7 

5.7 
5.7 

8 . 8  
8 . 8  

FR 100 
GW 

37 
37 

57 
57 

88 
88 
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Franke and Rellly ran another set of experiments based on the C 

experiments. In this set, they altered the flow rate of the well to 

determine what effects this had on the calculated drawdown at the well. 

These cases were also analyzed using GWBEH and the results are compared 

in Table 4. As can be seen, for the number of significant digits 

provided by Franke and Rellly, the results were identical. 

Several different test cases were run to test the validity of GWBEM 

with multi-zone systems. The first test case run was a simple three zone 

system shown in Figure 24. The results from GWBEH are compared against 

theoretical values from Bolteus and Tullberg (1985) in Figure 25. They 

solved for the theoretical temperature profile using a one-dimensional 

system of equations. As can be seen in the figure, the results from 

GWBEM compared very well with the theoretical ones. The number of nodes 

used to model this problem with GWBEM was 11 nodes along the top and 

•  K = 1 .75  • K = 0.1 

Figure 24: Simple multi-zone system 
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Potential along cross section 

25 

20 
-e- Theoretical 

15 

10 

5 

0 

Distance from left edge 

Figure 25: Comparison of theoretical and calculated results of simple 
multi-zone system 

bottom and 10 nodes along each side and along the interior boundaries. 

The run time for this problem was 63 seconds. 

Another multi-zone system presented by Brebbia and Chang (1985) was 

analyzed using GWBEH. This system is shown in Figure 26. It consists of 

three zones under a dam with sheet piles. Zones were used to aid in the 

modeling of the sheet piles, which was done by the use of special 

elements along the interior boundaries between the zones. These special 

elements had the flux across them set equal to zero, so that the poten­

tial was the only unknown. Brebbia and Chang used both a BEM model using 

72 constant value boundary elements and an FEM model with 68 nodes and 95 

elements. The system was solved with GWBEM using 96 global nodes with 72 

global linear elements in approximately 3.7 minutes. The potential 
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94 m ^ 

Dam ^ 68 m Dam 

-

Cutoff walls 
Zone 1 Zone 3 

Zone 2 

K for all zones = 0.03048 m/min 

Figure 26: Three zone system with cutoff walls (Brebbia and Chang, 1985) 

64 

32 -

32 64 124 143 84 104 163 183 203 

Figure 27: Potential values and flow vectors of three zone sheet pile dam 
problem calculated using GWBEM 

contours and flow vectors from GWBEM for this problem are shown in 

Figure 27. This figure agreed very closely with that of Brebbia and 

Chang and the flow patterns are realistic for such a system. 
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Figure 28 compares the pressure head on the base of the dam as 

calculated with GWBEH and the constant element BEM model of Brebbla and 

Chang. As seen in the figure, the curvilinear behavior of the pressure 

Conparlsan of bead under dan 
G9BEM vs. Brebbla and Chang 

GÏBEM 

0 B & C 

m 18 

S 16 

Distance from left edge of domain [m] 

Figure 28: Comparison of GWBEM and Brebbla and Chang (1985) calculated 
heads under base of dam 

distribution under the dam was properly simulated by GWBEM and verified 

by the Brebbla and Chang solution. Here is a case where the number of 

elements used to define a boundary was critical for the proper solution. 

If too few liAear elements had been used, the curvilinear behavior of the 

pressure distribution beneath the dam would not have been suitably 

established. Conversely, to more precisely determine the pressure 

distribution, more linear elements could have been used along the 

boundary beneath the dam. More research is needed to establish how many 
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elements would be needed to allow for the most efficient, yet accurate, 

solution for a given problem. 

A final problem was used to further validate the numerical solu­

tions found using GWBEM as well as to provide a test of the solution of 

problems with multiple wells in a domain. The problem, consisted of a 

sub-irrigation system with an inflow and an outflow tile and a specified 

evaporation rate along the top boundary. An analytical solution to the 

problem had been worked out by Kirkham and Morton (1989) and agreed with 

the numerical results obtained from GWBEM. Several of the more exacting 

details of the problem solution compared very well between the analytical 

and numerical methods, and further validated both. Unfortunately, the 

results of the analytical solution had not been officially published at 

the time of this writing. To protect the interests of the authors of the 

analytical solution, neither the numerical nor the analytical results 

will be included. What is important, however, is that GWBEM properly 

solved the problem with a relatively small amount of effort. 

Conclusions 

The utilization of GWBEM to the various groundwater problems 

discussed here show the program to be a viable analysis tool for many 

groundwater flow situations. Its ability to calculate system response 

for multi-zone groundwater systems, flow systems with multiple wells, 

cutoff walls, and interior flow velocities and potentials have been 

verified. Given adequate discretization of a problem boundary, GWBEM has 

also been shown to accurately simulate non-linear behavior using linear 

elements. 
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CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The details of a simple yet effective boundary element model for 

solving many groundwater flow problems involving non-homogeneous media 

with wells have been presented. The micro-computer program GWBEM has 

been shown to produce accurate results with a modest amount of user 

input, especially true when compared with the input requirements of other 

numerical techniques such as the finite-element and finite-difference 

methods. 

The details furnished by the program listing provide a good founda­

tion for the development of more advanced groundwater models along with 

information concerning the actual implementation of the BEM on computers. 

Unlike other numerical methods such as the FDM and FEM, such information 

was sorely lacking in the literature, at least at the outset of the model 

development. The use of Pascal, which is known for Its readability and 

structured constructs, makes for relatively easy understanding and 

modification, as well as portability between different machines. 

Several problems encountered with the application of the BEM, such 

as the coupling and assembly of multi-zone systems and the solution of 

ambiguous corners on a boundary have been dealt with and implemented in 

the model for an overall improvement of the method. An analytical 

Integration scheme for linear elements which avoids the potential errors 

due to numerical integration has been used throughout the program, 

including the implementation of discontinuous elements. The use of 

higher order elements would necessitate numerical integration schemes, 
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but the use of such elements is of questionable value considering the 

quality of most groundwater data. 

Many of the more tedious details concerning the use of the BEH have 

been automated in the model, particularly those involving the numbering 

of nodal DOFs, use of discontinuous elements, and zonal connectivity. 

Through the use of dynamic memory structures and virtual arrays, large 

problems may be solved on machines with small core memory with little 

sacrifice in speed. The result is a simple to use model which frees the 

user to focus on the problem being modeled rather than the intricacies of 

the model used to solve the problem. 

Recommendations 

Several improvements could be made to the model in its current 

form. The most notable improvement would be the ability to solve for 

unsteady flow problems. Most approaches to solving these problems with 

the BEM require integration over the entire domain. This requirement 

diminishes one of the main advantages of the BEM, namely the reduction of 

a problem's dimension. Several researchers have proposed methods to move 

the domain integration to the boundary thereby maintaining an advantage 

of the BEM, but these methods are currently not implemented in this 

model. 

The ability to model unsaturated flow would be valuable, but 

because of the variable conductivity which occurs with such flow, many 

problems would be encountered with a BEM solution. Further research is 

required. The application of the BEM to ephemeral stream-aquifer 

interaction would be useful, particularly during the transition from a 
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connected stream to a disconnected one. A mechanism for the determina­

tion of state of the stream-aquifer connection would Increase the model 

utility considerably. 
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APPENDIX A: PASCAL LISTING OF GWBEM 
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progtM GMBEM; 1 
{ 2 

3 
Program GHBEM - Main modula 4 

S 
A ganataL purpoaa groundwatar modal baaad on tha boun- 6 
dary alamant method. Capabla of aolvlng two- 7 
dlmanalonal, ataady-atata problaaia. Ron-homoganaoua 8 
domaina daalt with by dafining multiple lonaa of dif- 9 
faring but homoganeoua hydraulic eonduotivitioa. Alao 10 
allowa for tha incluaion of walla aa point aouroaa of 11 
ainka, with either apeeified head or drawdown. Cutoff 12 
walla aoeeoBodatad Iv uaa of apaoial alamanta. 13 

14 
15 

Copyright (c) 1989, Mark A. Liabe and Iowa State 16 
Univeraity 17 

18 
AU RIGHTS RESERVKO 19 

20 
Ihia program ia intended for non-ooonerolel uaa only, 21 
and may not be uaed for any other purpoaa without the • 22 
expreaaed written oonaant of the author and Iowa State 23 
Univeraity. 24 

25 
Language: Turbo Faaoal VS.O. 26 

27 
Laat modified : 4/15/89 28 

29 
} 30 

31 
Uaaa Crt, ( Syatam unit } 32 

B70EF, { GHBEM unit > 33 
B7File, { GHBEM unit } 34 
B7Utila, { GHBEM unit } 35 
B7Prep, { GHBEM unit } 36 
B7Int, { GHBQl unit } 37 
B7Solver, { GHBEM unit } 38 
B7Error; { GHBEM unit } 39 

40 
Procedure InitialisaJBoundary_Arraya; 41 
var Zone : byte; ~ 42 
BEGIN 43 

New(GNode); 44 
Fillchar(GNode",Siaeof(GNode"),0); 45 
New(GElem); 46 
Fillohar(GElem",Sl:eof(GElem"),0); 47 
FlllChar(ZonaD, ai:eof(ZoneD),0); 48 
New(NodeF); 49 
Fillohar(NodaF*,Siseof(KodeF*),0); 50 
for Zone 1 to Max_Zon*8 do 51 
with ZoneD(Zone] do ~ 52 
begin 53 
Element# nil; 54 
Halle nil; 55 
IntNodaa nil; 56 
lempElLiat nil; 57 

end; 58 
END; 59 

60 
procedure writeGridFile; 61 
{- printa out aolution grid fllea for contouring } 62 

var 63 
Fhlfile, 64 
DPXfile, 65 
DFYfile ; text; 66 
FhlFlleNama, 67 
OPXFileName, 68 
DPYFileName: atrlng[30]; 69 

begin 70 
{ write out phi aolution } 71 
PBIFileName ForceExtenalonCOutFlleName,'PBI'); 72 
aaalgn(PHIFlla, FHIFllaName); 73 
rewrlte(FHIFlle); 74 
For J 1 To Num INodea do Htlteln(PhlFlle,INode"[J|.X:9;4,' 75 

INode-[J].y;9:4,' 76 
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IRod#"[J).Phi:0:4); 1 
Fer J 1 To Hun BRodaa do Writaln(PhiPile,BNodâ (J].X:0:4,' 2 

BNoda"CJ].y:9:4,' 3 
BIIod«*[J].Fhl;9:4): 4 

For J 1 To NUB SRodaa do Writalm(Pbifile,8Node"(J].X;0:4,' S 
SHoda-IJl.*:8;4.' 6 
SRoda'[J].Haad:9;4); 7 

CloaaCFHIFlla); 8 
9 

if Num_IModaa > 0 than 10 
baiin 11 
DEXFllaRaoM FoteaExtanalonCOutFiLaNtaa,'DFX'); 12 
DPVFllalfaaM ForiiaEztanalenCOutFllaNaBa,'DFY'); 13 
aa#igH(DFXFil«, DFXFltaNana); 14 
imn;lta<DEXFlla) ; IS 
aa#i#n(DMFil#, DFVFllaNama); 16 
rawrltaCDFÏFlla); 17 
( writ# out DFhiX aelutien } 18 
For J 1 To Hum IRodas do Hrlt#ln(OEX£ila,IHod#*[J].X:9:4.' ', 19 

IHoda-[Jl.*:9:4.' 20 
(-INod#"[J].DFhiX*Conduotivity):9;4); 21 

{ writ# out DFhiY iolution ) 22 
For J 1 To Rum INodaa do Writ#ln(DPYfil#,IRod*"[J].X:9:4,' ', 23 

INode"[J].Y:9;4,' ', 24 
(-lRod#*[J].DPhiï*Conduotivity):9:4): 2S 

26 
Cloi#(OFXFIl#); 27 
Cloaa(DFYFil#): 28 

and; 29 
and; { of HritagridSol } 30 

31 
prooadura SoLva_Syataa; 32 
{- ealla virtual array aolvar } 33 
var ConditionJMum ; float; 34 
basin 35 
if not SoIvar(DOFCount, H, F, Condition_Num) than 36 
ShOMSrrorCSyatan Singular', Trua); ~ 37 

writalnCOutFila,'***»> CONDITION NUMBER : ' .Condition.Num); 38 
and; ( proc Solva Syatan } ~ ' 39 

40 
{ »>Main<« } 4l 
bagin 42 

Clraor; 43 
HandlalnputParamm ; 44 
Opan_Iaxt_fila(Infila, Infilanana, Rd); 45 
Op«n_Taxt_Fila(OutFila, Outfilanama, Wrt); 46 
Initialisa_Boundary_arraya; 47 
StartTinwrC'Getting data from input fil#'); 48 
6«t_Data; 49 
StopTimarCgat data from input fil#'}; SO 
StartTimerCPreparing ayatam for integration'); SI 
Prap_Syatem; 32 
StopTlner('prepare aystem for integration'); S3 

34 
{ Solve for unknown boundary conditions } 35 
StartTiner('Integrating boundary equations'); 36 
Intagrate_Boundary; 37 
StopTimerCintegrate boundary equations'); 38 

39 
Solve_Syatam; 60 
PlaoaSoIution; 61 
HritaBoundarySolution; 62 
WcitaSoureeSolution; 63 
{ Solva for interior unknown# } 64 
StartTioerCIntegrating for interior node solutions'); 63 
Integrata_Interior; 66 
StopTinerCintegrate for interior node solutions'); 67 
HritelnteriorSolution; 68 
DiaposaWorkArraysdru#); 69 
Hrlt#GridFil#; 70 
Clos#(Infils); 71 
Close(Outfile); 72 

end. { of Program GWBEM <**********#****************<< } 73 
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Unit B7DZP; 1 
( 2 

3 
4 

Program OHBEM - Unit B7DEF S 
6 

Contain* global varlabla dafinltiona and typaa for 7 
GNBEH. e 

9 
10 

Copyright (o) 1989, Mark A. Liaba and Iowa Stata 11 
Univaralty 12 

13 
ALL RIOHTS RESERVED 14 

IS 
TFRArray and TFVArray units oopywrita (o) 1987 by 16 
TorboFowar Software. Part of Turbo Profaaaional 17 
Prograanar'a Toolbox V4.0. For information, contact: 18 •< 

19 
TurboPowar Softwara 20 
3109 Scotta Vallay Driva, Suite 122 21 
Sootta Vallay, CA 93080 22 
(408) 438-8808 23 

24 
laat modified : 12/12/88 11:14 AM 25 

26 
J 27 

28 
interface 29 

30 
uaaa TFRArray, 31 

TFVArray: 32 
33 

Const Max_BNodas " 4000; 34 
Max'Elamants - 1400; 35 
Max.Zonas - 20; 36 
ZeroTol • 3.0e-8; 37 

Type 38 
Float " double; 39 
Coordinate " aingle; 40 
Direction " (x,y); 41 
OlobalOOF " word; 42 
NodaNunbar • word; 43 
ElamantMumber " integer; ( want to be +/- here } 44 

43 
NodeType • (Boundary, 46 

Interior, 47 
Source); 48 

BNodeType • (Phi, dPhi, Intr, Hall); { initial node assignments } 49 
SO 

ElementSFType - (Reg, { regular element shape function } 31 
Disc, { full discontinuous element shape function } 32 
LDlac, { discontinuous leading element shape func } > 33 
TDlsc); { discontinuous trailing element shape func } 34 

33 
CoordinateFair - arrayCdireotlon] of Coordinate; 36 
CoordFtr • "CoordLiat; 57 
CoordLlat - arrayd. .Max_BNodas] of CoordinateFair; 38 
NodaFlags - "FlagLlst; S9 
Flagliat •• arrayfl. .Max_BNodas] of Boolean; 60 

61 
ElamantMode - record 62 

Node ; NodeNumber; 63 
Dof : GlobalDof; 64 
Phi, DPhi : float; 63 
NTŷ  : BNodeType; 66 

end; 67 
68 

Elamentlype " record { record setup for elamanta - linear for now) 69 
A,B : EltmantNode; 70 
ElSFType : ElementSFType; 71 

end; 72 
ElamentPtr - 'ElamentLlst; 73 
ElamentLlst " arrayd..Max Elements] of ElemantType; 74 

73 
TampMode • record { record for nodal valuaa of tamp element list for each zona } 76 
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Coord ; CoordinataPalr; 1 
biomiVal ; float; 2 

and; 3 
4 

TaaqpEl " raeord S 
A, B : Taoplfoda; 6 
ZlTyp# : BRodaT̂ a; 7 

and; 8 
9 

SNodaTyp# " (SFlow, SHaad); 10 
SoureaModa • raoord { aourea noda raoord ) 11 

Coord : CoordinataPalr; 12 
Dof : OlobalOof; 13 
Radiua, 14 
Haad, 15 
Flow : float; 16 
Sourcalypa : SNodalypa; 17 

and; 18 
19 

IntarlorHoda ~ raoord ( interior noda raeord } 20 
Coord : CoordinataPalr; 21 
Phi, DPhlX, DPhiY : float; 22 

and; 23 
24 

ZonaRao " record 25 
Kx, Ky, ThataX : float; 26 
MunElaow, NuuWella, Numint, StartRow, NuoDOFa : word; 27 
Elananta, { tparray of Element Ninbara } 28 
Walla, { tparray of Souroenode } 29 
IntHodea, { tparray of InterlorRoda } 30 
TaaqpElLlat:{ tparray of TaoipElementa } 31 

TPRArray.TpArray; { RAM baaed dynamic arraya ) 32 
and; 33 

ZoneLlat • arrayd..Max_Zonea] of ZonaRec; 34 
35 

Flla_Name • Strin#[40]; 36 
Fila_Ext " atring[3]; 37 
Titlaatrin* - String[80]; 38 

39 
40 

conat BIypaStr : array[BNodelype] of atring(4] - ('Phi ','OPhi','Intr','WaIl'); 41 
STypeStr : array[SModaTî a] of atringi4] - ('Flow','Head'); 42 
ElSFTypeStr:array[ElementSFType] of atringlS] - ('Rag ','Diac ', 43 

'LDiao'.'TDiac'); 44 
BHatExtStr : atrlng[3] • 'BMT'; 45 
FVacExtStr : atringiS] • 'FVC'; 46 

47 
var 48 

GModa : CoordFtr; { RAM pointer array of global node coordinates } 49 
OElen : ElamentPtr; { RAM pointer array of global element definitions } 50 
ZoneD : ZoneLlat; { RAM array of zona daflnltlona } 51 
Node? : NodeFlaga; { RAM array of node flags } 52 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

} 65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

} 75 
76 

H ; IPVArray.TPArray; { full matricea ) 
F, 
RHS : IPVArray.TPArray; { vectora ) 
SinPsl, 
CoSlnPsl : float; 
Conductivity : array[1..Max_Zoneal of float; 

j! 
Zona, 
Num_Zones, 
Hum_BNodes, { total global boundary nodes } 
Huffl_Boundarlas; word; ( total master boundary alementa 
DOFCount : GlobalDof; { Global DOF counter } 
Title, 
Parami, 
ParamZ : atrlng(791; 
NumParama ; byte; 
Outflle, 
InFlla : text; 
InFlleNama, 
OutFlleRaffla : Flle_Name; 

Implementation 
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begin 
IFVAtxay.RangeCheok True; 
TERAttay.RanseCheok True; 

end. ( of unit B70EF <***************************<< ) 
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Unit B7Utlla; 1 
{ 2 

3 
Progrmm OHBEM - Unit B7UTILS 4 

Contain* mitoallanaoui toutlnaa for uma with GWBEM. 6 
7 

Copyright (e) 1989, Mark A. Liaba and Iowa State 8 
Univeraity g 

10 
ALL RimiS RESERVED 11 

12 
TFStrins, ISOoa, IFCrt, TEHindow unite eopywrite <o) 13 
1987 by TurboFower Software. Part of Turbo Profaa- 14 
aional Progranmer'a Toolbox V4.0, For information, IS 
contact: 16 

17 
TurboFowar Software 18 
3109 Seotta Valley Drive, Suite 122 19 
Sootta Valley, CA 93088 20 
(408) 438-8808 21 

22 
laat modified : 12/01/88 9:38 AM 23 

} 24 
23 

interface 26 
27 

uaes B70ef, 26 
Trig; 29 

30 
procedure HandlelnputParem#; 31 
{- manipulatea input parerne and aeta infile & outfile nemea } 32 

33 
function ATAN2 ( Y, X ; float) : float; 34 
{- Function which return# the properly aigned value of the angle given by } 35 
{ the elope provided. Compereble to the FORTRAN external ATAN2. 10/8/87 } 36 

37 
function radiuB(Xl, Yl, X2, Ï2: float) : float; 38 
(- routine to calculate diatancea between given pointe } 39 

40 
Function Pow(Baae,Exponent : float):float; 41 
<- returna Baae'Ex̂ ent } 42 

43 
procedure OetLocalCoorda(Souroe, ( Source point } 44 

Fieldl, { Field Pointa } 45 
Field2: CoordinatePair; 46 

var Normal, Locall, Looal2, SinPai, CoSinPsi : float); 47 
{- routine to calculate local coordinatea. Clockwiae ia + } 46 

49 
Function Kmdltd, J ; Integer): aingle; 50 
{- Kronecker delta function for two indicea } 51 

52 
Function WrapWord(Maxindex: word; Index ; word) : word; 53 
{- retume word index wrapped properly given Maxindex } 54 

55 
function WrapEIndex(Index, TotalElema: ElamentNunber) : ElementNumber; 56 
{- returns proper index of element number if at either end of index list } 57 

56 
Procedure Sign(Var A, B : float); 59 
{- anelogoue to FORTRAN algn routine } 60 

61 
Procedure 6etAlpha(L, M, H: CoordinatePair; Var Alpha : float); 62 
{- returns value of angle subtended by line L-M-H } 63 

64 
function CheckZeroFloat(valua : float): float; 65 
(- zero'a out near sero values } 66 

67 
procedure StartTimer(Message : TitleString); 68 
(starts timer and write message to screen) 69 

70 
procedure StopTimer(Message : TitleString); 71 
{stops timer end writes time elepsed & message to output file) 72 

73 

75 
implementation 76 
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usai TFSttlns, 2 
TPDob, 3 
IPCrt, 4 
TCHindow, S 
B7Ettori B 

7 
const M##mm##Attr - 91E; 8 

9 
Typa Component - 10 

Vector - •rray[l..kl ot float; 11 
12 

var StartTlna, StopTlna : longint; 13 
MaaAttr : byte; 14 
MesHindoM : WlndowPtr; 15 

16 
procedure HandlelnputPar«u; 17 
{- nanipulatea Input parama and sets infile & outflle names } 18 

begin 19 
Caae ParamCount of 20 
0 ; begin 21 

HriteCName of input file : 22 
Readln(Infilenane); 23 
Hriteln; 24 
Write('Name of Output file : 25 
Readln(Outfilenam*); 26 

end; 27 
1 : begin 28 

InFileNama :> DefaultEstenaion(FarafflStr(l),'dat'); 29 
OutFileName ;•> ForceExtenslondnFileNaffle.'out'); 30 

end; 31 
2 : begin 32 

InFileName :• DefauItExtansion(FaramStr(l),'dat'}; 33 
OutFileName ForceExtenaion(FaramStr(2),'out'); 34 

end; 35 
end; 36 

end; ( proc HandlalnputParams } 37 
38 

< »>ATAN2.INC«< ) 39 
{ Function Which returns the properly signed value of the angle given by } 40 
{ the slope provided. Comparable to the FORTRAN external ATAN2. 10/8/87 } 41 
{ } 42 

function ATAN2 ( Y, X : float) ; float; 43 
const Zero • l.OE-8; 44 

45 
var flag : byte; 46 

temp, sign ; float; 47 
begin 48 

if abs(X) < Zero than X 0.0; 49 
if abs(Y) < Zero then 50 
begin 51 

Y :• 0.0; 52 
sign 1.0; S3 

end 54 
else sign Y/aba(Y); 55 
if X - 0.0 then temp (PI 12)* sign 56 
else 57 
begin 58 

tamp arotan(Y/x); 59 
if Y <> 0.0 than 60 
begin 61 

if X < 0.0 then temp PI * sign + temp; 62 
end 63 
else 64 

if X < 0.0 then tamp PI; 65 
end; 66 
ATAN2 temp; 67 

end; { ATAN2 function } 68 
69 

<-»>Radius«< } 70 
{ Calculates the distance between two points in 2 dimensional space. 10/14/87} 71 
{ } 72 

function radlus(Xl, Yl, X2, Y2: float) : float; 73 
{ routine to calculate distances between given points > 74 
var X_Diff, Y_Diff : float; 75 
begin ~ 76 
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X_Diff X2 - XI; 1 
YJlte Y2 - *1; 2 
radlUB •qtt< X.DifC * X_Dl«f + Y_Diff • Y_Diff); 3 

#nd; { of radlua funetlen ) 4 
5 

{—-»>GatlCootd.IHC«< ) 6 
( Nota : Aaaumaa poaltlva local ditaotlon la CLOCKWISE around boundary } 7 
{ Modified 00/20/88. } 8 
{ > 9 
ptooaduxa GatLooalCoorda(Souroa, { Source point } 10 

Fleldl, { Field Pointa } 11 
Field2: CoordinatePait; 12 

var Normal, Looall, Looal2, SinPai, CoSinPai : float); 13 
{- routine to calculate local coordinatea. Clookwiae ia + } 14 

var Blement_Length ; float; IS 
basin 16 
Element Lentth radiui(Field2IX],Field2tY].Fieldl[X],Fieldl[Y]); 17 
CoSinPal (Field2[Xl - Fieldl(X])/Eleaent_Length; IS 
SinPai (FleldZtYl - FialdKY])/Element Length; 19 
Looall (FialdKY] - SourcelY]) * SinPai + (FieldllX] - Soutce(Xl) * CoSinPai; 20 
Locel2 (Fiald2(Y] - Source(Y]} * SinPai + (Field2[Xl - Source[X]) * CoSinPai; 21 
Normal ;« Aba((Souroe[Y]-FieldlIY]) * CoSinPai - (Souroa(X] - FieldllX]) * SinPai); 22 

end; { GetLocalCoorda } 23 
24 
25 

Function Pow<Baae,Exponent : float):float; 26 
{- retuma Baaa'Exponent } 27 

var aign : integer; 28 
BEGIN 29 

IF Exponent • 0.0 then Pow 1.0 30 
Elae 31 
begin 32 

IF Baaa " 0.0 then Pow 0.0 33 
ELSE 34 
begin 35 
aign .— round(aba(baae)/baae}; 36 
if (aign < 0) and (Int(Exponent) <> Exponent) than 37 
begin 38 
writeCnice try - bad axpotentiation'); 39 
Belt; 40 

end; 41 
heme aba(baae); 42 
Baaa Exp(Ln(Baae) * Exponent); 43 
Fcm aign • Baaa; 44 

end; 45 
and; 46 

END; 47 
48 

Function Kmdltd, J : Integer): aingle; 49 
(- Kronecker delta function for two indices } 50 

begin 51 
If I " J then Xmdlt 1.0 52 
ELSE KmOlt 0.0; S3 

End; 54 
55 

Function WrapHord (MaxIndex: word; Index : word) ; word; 56 
(- retuma indey wrapped properly given Maxindex } 57 

begin S8 
If Index > Maxindex then WrapWord :• 1 59 
elae 60 
If Index < 1 then WrapWord Maxindex 61 
elae WrapWord Index; 62 

end; 63 
64 

function WrapEIndex(Index, TotalElema: ElementNumber) : EleaantNunber; 65 
{- retuma proper index of element number if at either end of index liât } 66 

begin 67 
WrapEIndex Index; 68 
if Index < 1 then WrapEIndex :- TotalElema 69 
elae if Index > TotalElema then WrapEIndex 1; 70 

and; 71 
72 

Procedure Sign(Var A, B ; float); 73 
(- analogoua to FORTRAN aign routine } 74 

Begin 75 
A :" Aba(A); 76 
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If B < 0.0 then A - A; 1 
End; 2 

3 
Fuaotton DobFtoduet(A, B; Vector); float; 4 
(- xatuma DetProduot of vaetora A & B } S 

Vax Taaqp : float; 6 
Coop : Conponant; 7 

Bagln 8 
Tamp :* 0.0; 9 
For Comp :• i to k do 10 

Taaqjt Tamp + A[Ccmp] * B[Coap] ; 11 
DotProduct Ttetp; 12 

End; 13 
14 

Frooedura CroaaProduct(A, B; Vaotor; Var C : Vaetor); IS 
{- xatuma eroaa product of vaetora A & B In C } 16 

Var Ccaq> : Cooponant; 17 
Bagin 18 
cm AlJl • B[k] - BlJl * Alkl; 19 
Ctdl !- -<A[11 • B(k] - B[l] * A(k]); 20 
Ctkl A[il • B(dl - B[ll * AtJl; 21 

End; 22 
23 

Frooadura GatAlpha(L, M, H: CoordlnataPalr; Var Alpha : float); 24 
{- xatuma valua of angla aubtandad by llna L-M-H ) 23 

Var A, B, C : Vactor; 26 
Bagln 27 
All] LtX] - MIX]; 28 
AtJ] LIÏJ - Mm; 29 
A(k] :• 0.0; 30 
Btil HtX) - M[X]; 31 
BIdl !- HtYl - Mm; 32 
B(k] 0.0; 33 
Alpha ArcCoa(Dotproduot(A,B)/Sqrt(Dotproduot(A,A) * Ootproduct(B,B))); 34 
CroaaFroduct(A,B,C); 33 
If C(k] < 0.0 than Alpha 2.0 * Pi - Alpha; 36 

End; 37 
38 

function ChaekZaroFloat(valua ; float); float; 39 
{- laxo'a out naar caro valuaa } 40 

bagln 41 
if aba(Valua) < Zarolol than ChackZaroFloat ;> 0,0 42 
alaa ChackZaxoFloat Valua; 43 

and; { func ChaokZaro } 44 
45 

procadura MakaMaaaagaWin; 46 
(- puta up maaaaga window } 47 

bagin 40 
HiddanCuraor; 49 

Frama(3iara :• 'fH"""!'; SO 
if not MakaWlndow(MaaWlndow,3,14,75,18,Trua,Irua,Falaa,MaaAttr,MasAttr.MaaAttr, " ) 31 
than ErrorMam; 32 

If Hot DlaplayHlndow(MaaWindow) THEN ErrorMam; 33 
and; { proc ShowError } 34 

33 
procadura ClaarMaaaagaHln; 36 
{- diapoaaa of maaaaga window } 37 

bagin S8 
if MaaWindow <> nil than 01apo8aHlndow(ErasaTopHindow); 39 
MaaWlndow :> nil; 60 

and; 61 
62 

procadura ShowMaaaaga(Maa : TltlaString); 63 
(- puta up Maaaaga window } 64 

bagln 63 
FaatWrltaWlndow(Cantar(Mas,69),2,1,MaaAttr); 66 

and; { proc ShowError ) 67 
68 

procadura FrlntMaaaaga(Maa : TltlaString); 69 
(- writaa maaaaga to output fila } 70 

bagin 71 
wrltaln(Outflla); 72 
wrltaln(Outflla,Maa); 73 
writ*ln(Outflla); 74 

and; ( proc prlntmaaaaga } 73 
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proeadux* 8tmrtTim*r(Mem#### : IltlaSbrinB); 2 
{•tact* timer and writ## m####*# to #or##n) 3 

b#|in 4 
HiddanCuraor; S 
if MaiWindow - nil than M#k#Ma##a##Win; 6 
StaxtTim# Tim#M#; 7 
ShowM####*#(M#a#a##); 8 

and; { proe StartTim#r } g 
10 

proeadura StopIimarCMaiaaga ; TitlaString); 11 
(atop* timer and write# tim# #l#pa#d & meaaage to output file} 12 

begin 13 
Stoptime limeHS; 14 
PrintMe###g#('—> •+Potm<'###.####',<StopIlBi#-StartTime)/1000.0) + 15 

' aeoonda to '+ Heaaag# + 16 
ClaazMaB##g#Hin; 17 
RormalCuraor; 18 
Clraer; ig 

end; { proe StopTiaer } 20 
21 
22 

begin 23 
MapColora :• True; 24 
MaaAttr MapCoLor(Me###g«Attr); 25 
M##Window nil; 26 

end. { of Unit B7UTILS <***************************<< } 27 
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Unit B7Ft«p; 1 
{ 2 

3 
Program OHBEM - Unit B7EItEF  ̂

S 
Contalna routinaa for autooiatlc ganaratlon of global 6 
DOFa and aaaignmant of dlaeontlnuoua alamanta for 7 
Hultl-aona flow ayatam aaaanbly. 8 

9 
Copyright (o) 1989, Mark A. Liaba and Iowa Stata 10 
Univaralty 11 

12 
ALL Rims RESERVED 13 

14 
15 

TFSArray, TFVArray, and IFStclng unit# eopywrita (o) 16 
1987 by TurboPowar Softwara. Part of Turbo Profaa- 17 
aional Programnar'a Toolbox V4.0. For Information, 18 
contact; 19 

20 
lurboFowar Softwara 21 
3109 Scotta Vallay Driva, Suit# 122 22 
Scotta Vallay, CA 93088 23 
(408) 438-8808 24 

2S 
laat modifiad : 12/01/88 9:48 AM 26 

J 27 
28 

intarfaca 29 
30 

uaaa B7Daf, 31 
B7Utll8, 32 
lERArray, 33 
IFVArrey, 34 
TPString, 35 
TPArr, 36 
B7Data; 37 

38 
prooadura Prap_Syatam; 39 
{- main routina to Frap unit. Finda diacontinuoua alamanta and ID'a nodaa } 40 

41 
prooadura MakaElLiat(Zona : byta); *2 
{- ganarataa taoqp liât of alamant coordinataa and intarpolatad known bndy vais } 43 

44 
prooadura ClaarElLiat(Zona : byta); 45 
{- claara tamp liât of alamant coordinataa and intarpolatad known bndy vais } 46 

47 
prooadura DiapoaaVforkArraya(DalataFila ; Boolaan); 48 
{- fluabaa and oloaaa work arraya } 49 

SO 
prooadura FlaoaSolution; 51 
{- placaa ayatam raaulta into propar OOF looationa } 52 

, 53 

implamantation 55 
56 

const 57 
ElMultl " 0.25; { natural ooordinata locations within alamanta for } 58 
ElMult2 " 0.73; { intarior fraadom DOF for discontinuous alamanta } 59 

60 
61 

var Zona : byta; 62 
RowCount : word; 63 
Noda, Wall : NodaNumbar; 64 
Elamant ; ELamantHunbat; 65 
CurrENum, FravENum : ElamantNuobar; 66 
CurrEl, FravEl : ElamantTypa; 67 

68 
procadura DiaposaWorkArraya(DalataFlla : Boolaan); 69 
{- fluahaa and cloaas work arraya } 70 

bagin 71 
TFVArray.OiapoaaA(H, DalataFila); 72 
H nil; 73 
TFVArray,DiaposaA(F, DalataFila); 74 
F nil; 75 

and; 76 
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1 
ptooadut* MakaHorkAtxarsi 2 
(- eraataa work array# B(OOF,OOF] & F[DOF] } 3 

var Zero : float; 4 
FRan : longiot; S 

bagln 6 
Zero :• 0.0; 7 
{ not*: TFVarray error handllnt !• «et to on for now. write own handler later } 8 
if (DOFCount * DOFCount * •ls*of(float)) < (HwAvail div 2) then 9 
FMM :• DOFCount * DOFCount • ai#eof(float) 10 

else FRAM memAvail div 2; 11 
TFVArrar.MakeA(B, DOFCount, DOFCount, aiteof(float). 12 

FerceExtenalon(OutFileRain*,HHatEztStr), 13 
MemAvail div 2); 14 

TPVArray.ClearA(H, Zero, TFVArray.Faatlnit); IS 
if (DOFCount * aiteof(float)) < (MemAvail div 2) then PRAM auoo(DOFCount * aizeof(float)) 16 
elae FRAM memAvail div 2; 17 
TFVArray.MakeA(F, DOFCount, 1, aiseof(float). 18 

ForoeEKt#naion(OutFil*Name,FVeoExtStr), 10 
FRAM); 20 

IPVArray.ClearA(F, Zero, IPVArray.Famtlnit); 21 
end; { of MakeWorkArraya } 22 

23 
procedure Prep_8yatem; 24 

{- main routine to Frep unit. Finda diaoontinuoua elementa and Global OOFs} 25 
var TampHell : SouroeNode; 26 

RumRodea ; word; 27 
Alpha : float; 28 
FiratDOF : GlobalOOF; 29 
RagCount. 30 
TLDiaeCount : word; 31 

32 
function OOFSinRode( RType ; BNodelype) : GlobalDOF; 33 
{- retuma number of DOFS at node, depending on Interior of not } 34 

begin 35 
if RType ~ Intr then DOFSInMode 2 36 
elae DOFSInRode :• 1; 37 

end; 38 
39 

begin 40 
DOFCount 1; { initialize OOF counter } 41 
RowCount 1; 42 
for Zone 1 to Num_Zonea do 43 
with ZoneD[Zone] do 44 
begin 45 
StartRow RowCount; { atart of equationa for zona n } 46 
{ determine if elementa need to be diacontinoua } 47 
for Element ;• 1 to NumElema do 48 
begin 49 
CurrERum GetElementRum(Zlementa,Element); SO 
FrevEHum 0etElementNum(Element8,wrapEIndex(pred(Elafflent),NumElema)); 31 
GetElement(CurrENum,CurrEl); 52 

. GetElement(FrevENum,PrevEl); S3 
with CurrEl do 54 
begin 55 

{$undef ALLDISC) 56 
{$ifdef ALLDISC } S7 

ElSFType Disc; { force all elements to disc for now } 58 
{delaa} 59 

case ElSFType of 60 
Reg : 61 
begin { check if current element should be discontinuous } 62 
{ force interior-exterior Junctions to be discontinous } 63 
if (FrevEl.B.NType - Intr) or (FrevEl.B.HTypa - Wall) 64 
then ElSFType ;• LDisc 65 

else ( check leading node boundary conditions and geometry > 66 
case A.RType of 67 
Fhi ; begin 68 

if FrevEl.B.NType • Fhi then 69 
begin { check angle between elementa ) 70 
GetAlpha(6Noda'[PrevEl.A.Node], 71 

GNode'IFrevEl.B.Node], 72 
GNode-[CurrEl.B.Node], 73 
Alpha); 74 

if aba(aba(Alpha) - Fi) > ZeroTol then 75 
begin { change ElSFType of elements, if necessary } 76 
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ElSFTyp# LOlte; { at l##mt } 1 
if PsavEl.ElSFTyp* • LDimo than FtavEL.ElSFTyp* :> Diso 2 
•It* FxavEl.ElSFTyp* IDiso; 3 

and; 4 
and; S 

and; ( Phi ea** } 8 
Intr, 7 
Wall: bagin 8 

ElSFTypa LOiao; { at laaat } 8 
if FxavEl.ElSFIyp* - LOiao than PtavEl.ElSFTyp* Diao 10 
*la* Pt*vEl.E18FIjrp* TTlao; 11 

and; { Zntr/Hall eaaa } 12 
and; { oaaa } 13 
if (B.HTyp* - Intr) or (B.NTyp* > Wall) than { chaok trailing noda } 14 
oaaa ElSFTyp* of IS 
R*( i ElSFTyp* TDiac; 16 
LDiao; EISFT̂  Diao; 17 

and; 18 
and; { Rag } 19 

20 
TDiao : 21 
bagin 22 
if (PravEl.B.RTypa - Intr) or (PravEl.B.NTypa - Wall) than 23 
ElSFTypa Diao 24 

ala* 23 
eaaa A.HTypa of 26 
Phi ; bagin 27 

if PravEl.B.NTypa " Phi than 28 
bagin { chaok angla batman alamanta } 29 
0atAlpha(6Noda'(PravEl.A.Noda], 30 

ONoda*[PravEl.B.Noda], 31 
GNoda"[CurrEl.B.Nodai, 32 
Alpha); 33 

if aba(aba(Alpha) - Pi) > ZaroTol than 34 
bagin { changa ElSFTyp* of olamanta, if naoaaaary } 33 
ElSFTypa :> Diao; 36 
if PravEl.ElSFTypa - LDiao than PravEl.ElSFTypa ;• Diao 37 
alaa PravEl.ElSFTypa :• TDiao; 38 

and; 38 
and; 40 

and; { Phi oaaa } 41 
Intr, 42 
Wall: bagin 43 

ElSFTypa Diao; 44 
if PravEl.ElSFTypa " LDiao than PravEl,ElSFTypa Diac 43 
alaa PravEl.ElSFTyp* := TDiao; 46 

and; { Intr - Wall oaaa } 47 
and; { oaaa } 48 
if (B.NIypa " Intr) or (B.NTypa - Wall) than { chaok trailing noda } 49 
oaaa ElSFTypa of SO 
Rag : ElSFTypa :> TDiao; 31 
LDiao: ElSFTypa :• Diac; 52 

and; 33 
and; { TDiao } 34 

33 
{ pick up laad in alamanta to int-axt junction; força all al'a diso } 56 
alaa if ((A.NTypa " Intr) or (A.NTypa - Wall)) and (PravEl.ElSFTypaoDiac) than 57 
if PravEl.ElSFTypa - LDiao than PravEl.ElSFTypa :» Diac 58 
alaa PravEl.ElSFTypa TDiac; 58 

and; ( oaaa } 60 
{Sandif} 61 

PutElamant(CurrENum,CurrEl); 62 
PutElamant(PravENum,PravEl); 63 

and; { CurrEl do } 64 
and; ( alamant loop } 65 

66 
{ find global DOF nuobara for zona DOFa } 67 

68 
{ tak* cara of lat noda in zona firat } 69 
CurrENum :• OatElamantNum(Elamanta,l); 70 
GatElaoMntCCurrENum,CurrEl); 71 
if CurrEl.A.DGF - 0 than { if not dafinad yat } 72 
bagin 73 
CurrEl,A,DOF DOFCount; 74 
FiratDOF ;• DOFCount; 75 
ino(DOFCount, OOFSInNoda(CurrEl,A,NTypa)); 76 
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CurtEl.B.DOF DOFCount; 1 
PutZl#m«nt(CurrEMwu,CurrEl); 2 

•nd 3 
4 

begin S 
FtrstOOF CuxtEl.A.DOF; 6 
d#o(DOFCount, DOFSInMod«(CurcEl.B.NTyp*)); 7 

•nd; 8 
Pf#vEl CurtEl; g 
{ taka cara of all othar nodaa In lona } 10 
for Elaawnt 2 to MumElama do 11 
bagln 12 
CurxERuai GatEl«aMntNwn(Elam«nta.Elamant); 13 
OatElaaMnt(CutrERum,CuxzEL)i 14 
If Cuxtal.A.DOF " 0 than { not asslgnad yat } IS 
with CurtEl do 16 
bagln 17 
if (FxavEl.ElSFTypa - TDiae) or 18 
(CurxEl.ElSFl̂ a«L01so) or (CutrEl.ELSFTypa'Diso) than 19 
bagin 20 
ino(DOFCount, DOFSInMada(FtavEl.B.MTypa)); 21 

and; 22 
A.DOF DOFCount; 23 
if Elamant < NunElaoa than 24 
bagln 25 
ino(DOFCount, DOFSInNoda(CurrEl.A.NTypa)); 26 
B.DOF DOFCount; 27 

and 28 
alaa 29 
caaa ElSFTypa of 30 
TDiae, Diae : bagln 31 

ino(DOFCount, DOFSInNoda(CurrEl.A.NTypa)); 32 
B.DOF DOFCount; 33 

and; 34 
alaa B.DOF FiratDOF; 35 

and; 36 
and; 37 
FutElaaiant(CurrENuffl,CurrEl); 38 
FravEl CurrEl; 39 

and; 40 
41 

DOFCount auoc(DOFCount); 42 
43 

{ Caloulata nuobar of rows in boundary } 44 
RagCount :• 0; { thaaa count up tha nunbar of REG alamanta } 45 
TLDiaeCount 0; { thaaa count up tha numbar of T/LDISC alamanta) 46 
for Elamant 1 to NumElama do 47 
bagin 48 
CurrENum GatElamantNuBi(Elamants,Elamant); 49 
OatElamant(CurrENum,CurrEl); SO 
caaa CurrEl.ElSFTypa of 51 
Rag : bagin 52 

inc(RoMCount, 2); 53 
Ragcount auco(RagCount); 54 

•nd; 55 
LDiao, 56 
TDiae: bagin 57 

ino(RoMCount, 2); 58 
TLDiacCount :• auco(TLDiacCount); 59 

and; 60 
Disc : ino(RoiCount, 2); 61 
and; 62 

and; 63 
RowCount RowCount - RagCount - (TLDiacCount div 2) - 1; 64 
( Nota; ahould ALWAYS hava an avan numbar of T/LDiac alamant typas } 65 
{ for any sona boundary } 66 

67 
{ account for walla in DOF and row count } 68 
if NunWalla > 0 than 69 
for Wall 1 to NunMalls do 70 
bagin 71 
GatWall(Zona,Wall,TampWall); 72 
TaopHall.DOF DOFCount; 73 
FutWall(Zona,WaU,TaapHall); 74 
DOFCount suco(DOFCount); 75 
RowCount succ(RowCount); 76 
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•nd; 1 
2 

NumDOFm :> DOFCounb - StaxtRow; ( «tore NumDOFa In zone ) 3 
RowCount auoo(Ro«iCounb); * 

end; { ZoneD do } S 
OOFCount pred(DOFCounb): 6 
MakeMorkArraya; 7 

end; 8 
0 

prooedure QatElPreadoma(var TElement ; TempEL); 10 
{- retuma coordlnatea and Interpolated known vala for dlao. element typea } 11 
{ uaea unit global var CurrEl : ElamantType. Aaaumea Linear elements } 12 
( laat modified: 11/22/88 6:18 EM } is 
var Locall, Loeal2, Normal, Length, SlnPal, CoSinPal : float; u 

DunbEl : Tm ÊI; IS 
16 

function MKX ; float) : float; 17 
(- retuma shape function value for linear element } 18 

begin 19 
Ml (Looal2-X)/Length; 20 

end; 21 
22 

function N2(X : float) : float; 23 
(- returns ahape function value for linear element } 24 

begin 25 
N2 :• (X-Looall)/Langth; 26 

and; 27 
28 

begin 29 
with CurrEl do 30 
begin 31 
TElement.A.Coord GNode'tA.Node]; 32 
TElement.B.Coord GNode'ÎB.Node]; 33 
caae A.NType of { asaume node type aama on each end of element } 34 
Phi : begin 35 

TElement,A.KnownVal A.Phi; 36 
TElement.B.IbiownVal :• B.Phl; 37 

end; 38 
DPhi, 39 
Wall: begin 40 

TElement.A.KnownVal A.DPhi; 41 
TElement.B.KnownVal B.DPhi; 42 

end; 43 
Intr: begin 44 

TElement.A.IbownVal 0.0; 45 
TElement.B.KnownVal 0.0; 46 

end; 47 
end; 48 
TElement.ElType A.NType; 49 
DumbEl TElement; { you'll aee why } SO 
GetLocalCoorda(DumbEl.A.Coord, { some fixed point, doesn't matter } 51 

GNode'tA.Node], 52 
ONode'IB.Node], 53 
Normal, Locall, Local2, SinPsl, CoSinPsi); 54 

Length :- aba(Looal2 - Locall); 55 
with DumbEl do 36 
begin 57 
if (ElSFType-LDisc) or (ElSfType-Disc) then 58 
begin 59 
TElement.A.CoordCX] A.Coord(X] + <B.Coord(X] - A.CoordtX]) * ElMultl; 60 
TElement.A.Coord[Y] A.CoordtY] + (B.CoordCïl - A.CoordtYI) * EUtultl; 61 
TElement.A.KnownVal Nl(Looall+Length*ElMultl)*A.KnownVal + 62 

N2(Locall+Length*ElMultl)*B.KnownVal; 63 
end; 64 
if (ElSfType-IDiac) or (ElSfType-Disc) than 65 
begin 66 
TElement.B.Coord[X] A.CoordtX] + (B.Coord(Xl - A.Coord(X]) * ElMult2; 67 
TElement.B.CoordCÏ] A.CoordtY] + (B.Coord(Y] - A.CoordtY]) * ElHult2; 68 
TElement.B.KnownVal N1(Locall+Length*ElMult2)*A.KnownVal + 69 

N2(Looall+Length*ElMult2)*B.KnownVal; 70 
end; 71 

end; ( with } 72 
end; { with } 73 

and; { of GetElFreedoms } 74 
75 
76 



www.manaraa.com

95 

pteoadut* Mak«ElLl*t(Zona : bjrta); 1 
{- ••nwabai t«ap list of «Itamt ooordlnatas and Inttrpolabad known bndy vala } 2 

var TElwnanb : Tŵ l; 3 
bagln * 
with ZonaDIZona] do 3 
bagin 6 
{ naka liât uain# TFArtay toublnaa } 7 
ni(Atrar.HakaA(T«qpElLlat, IfumEIama, 1, Slfao£(T«npEl)); 8 
filIChar(IElamnb,aiiaof(TElaaanb),0); 8 
inAxxay.ClaarAdaoiiBlLlab, TElamanb, TFRArtay.Faablnib); 10 
for Zlamant 1 bo NumElama do 11 
ba#in 12 
CuxtEHuai :• G#bEl#m«ntNum(Elam«nba, Elamanb) ; 13 
GabElamanb(CurtENwm, CutxEl); 14 
OabElFtaadoM (TElamanb ); 13 
PubIElamanb(Taâ lLiab,Elamanb,TElamanb) ; 16 

and; 17 
and; 18 

and; { of MakaElLlab } 18 
20 

ptooaduta Extrapolaba(E18FTypa : ElamanbSFTypa; 21 
vat TElamanb ; Taô El) ; 22 

{- axbtapolabaa Inbatlor valuaa of dlao. LINEAR alamanba bo and polnba } 23 
vat NIA, NIB, N2A, N2B ; float; 24 

DumbEI ; TaoqpEl; 23 
bagln 26 
oaaa EISFTypa of 27 
Rag ; bagin 28 

NIA 1.0; 28 
NIB 0.0; 30 
N2A 0.0; 31 
N2B 1.0; 32 

and; 33 
Dlao; bagin 34 

NIA 1.5; 35 
NIB :• -0.5; 36 
N2A -0.3; 37 
N2B 1.3; 36 

and; 38 
LDiac: bagin 40 

NIA !- 4,0/3.0; 41 
NIB -1.0/3.0; 42 
N2A 0.0; 43 
N2B 1.0; 44 

and; 43 
IDiao: bagin 46 

NIA :• 1.0; 47 
NIB 0.0; 48 
N2A -1.0/3.0; 48 
N2B 4.0/3.0; 50 

and; 51 
and; { oaaa } 52 
wibh TElamanb do 53 
bagin 34 
DumbEI.A.IhownVal NlA*A.KhownVal + NlB*B.XnownVal; 55 
DumbEI.B.KhotmVal N2A*A.KnownVal + N2B*B.KnownVal; 56 

and; 57 
TElamanb :> DumbEI; 58 

and; { proc Exbtapolaba } 58 
60 
61 

ptooaduta FlaoaSolution; 62 
{- placaa ayabam taaulbs inbo ptopat alamant locations } 63 

var TEll, TE 12 : TaopEl; 64 
TWall : SouroaNoda; 65 
NaxbEl : ElamanbTypa; 66 
NasbENum : ElamanbHuobtr; 67 
Sign : ahorbinb; 66 

68 
bagin 70 
for Zona 1 bo Num_Zon#a do 71 
wibh ZonaDIZona] do ~ 72 
bagin 73 
FravENun GabElamanbNum(Elamanb»,NumElama); 74 
GabElamanb(Ft#vENum,FtavEl); 75 
CurrENum OatElamantNumCElamanta,1); 76 
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G«tEl«n«nt(Cut£ENun,CuxxEl); 1 
for Element 1 to RunEltms do 2 
b«sln 3 
Sign abaCCuxtKNun) dlv CurrElfua;  ̂
HaxtEHun Q#tZlam*ntNum(El#a*nta, S 

wrapEIndaxCauoo(Elamant),NumElama)); 6 
OatElaBMnt<HaxtBNuM,RoxtEl); 7 

8 
( gat aelution valuaa from vaotor using global OOF'a ) 9 
TEll.A.KnomVal ChaokZatoFloat<gvfloat<F,CuxrEl.A.DOF,l)>; 10 
TEll.B.KnownVal ChockZaroFloat(gvfloat(F,CurrEl.B.DOF,l)): 11 
E%trapolat«(CurrEl.EL8FTypa, TBll); 12 
If <(CuxrEl.A.MTypa - Intr) or (CurrEl.A.NTypa " Wall)) and (Sign > 0) than 13 
bagin 14 
TEU.A.KnotmVal ChaekZaroFloat(gvfloat(F,suce(CurcEl,A.DOF),l)); IS 
TEU.B.IbiownVal ChaokZaroFloat(gvfloat(F,aueo(CurrEl.B.DOF), 1 )); 16 
Extrapolata((̂ irrEl.ELSFTypa, TE12); 17 

and; {if - Intr/Wall ) 18 
19 

( kaap Fhl'a consistant across alamant intarsactions } 20 
if (CurrEl.A.NTypa <> Phi) than 21 
bagin 22 
if FravEl.A.NTypa - Phi than 23 
TEll.A.KnoMnVal FravEl.B.Fhi; 24 

if NaxtEl.A.NTypa " Phi than 25 
TEll.B.XnotmVal MaxtEl.A.Phi; 26 

and; 27 
28 

{ put extrapolated values into plaoa } 29 
with CurrEl do 30 
bagin 31 
caae A.NType of 32 
Phi ; begin 33 

A.DPhi Sign * TEll.A.XnownVal; 34 
B.DPhi Sign * TEll.B.KnownVal; 35 

and; 36 
DPhi, 37 
Wall: begin 38 

A.Phi TEll.A.KnomVal; 39 
B.Phi :• TEll.B.KhomiVal; 40 

and; 41 
Intr: if Sign > 0 then 42 

begin { only plaoa valuaa if lowaat zona w/ common boundary } 43 
A.Phi :- lEll.A.KhomVal; 44 
B.Phi TEll.B.KhownVal; 45 
A.DPhi IE12.A.lhownVal; 46 
B.DPhi :•> TEU.B.XnownVal; 47 

end; 48 
and; { caae ) 49 

end; ( with } 50 
FutElement(CurrENum, CurrEl); 51 
PrevEl CurrEl; 52 
PrevENum CurrENum; 53 
CurrEl :- NextEl; 54 
CurrENum :• NextEHum; 55 

end; { for } 56 
for Well :• 1 to NusMells do 57 
begin 58 
GetWelKZone.Well.TWell); 59 
with TWell do 60 
oaee Souroelype of 61 
SFlow ; Head gvfloatCF.DOF,1); 62 
SHead : Flow gvfloat(F,DOF,l); 63 

and; 64 
PutWalKZone.Well.IWell); 65 

end; { for } 66 
end; ( with } 67 

end; { proo PlaeeSolution } 68 
69 
70 

procedure ClearElLiat(Zona : byte); 71 
(- clears temp list of element coordinates and interpolated known bndy vais } 72 

begin 73 
TPRArrsy.OisposeA(ZoneD[Zone].TempElList); 74 
ZoneDIZonel.TeopElList nil; 75 

(Sifdef DEBUG} 76 
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m:lb«la(Oub£lla, > HucAvall: ' .Maxavall) ; 

and; ( of ClaarElLlab } 
and. { of Unit B7mP <***************************<< > 



www.manaraa.com

98 

Unit B7Inb: 1 
{ 2 

3 
Program GWBEM - Unit B7INT 4 

S 
Contains analytical intégration# uaad for solution of 6 
boundary and internal unknotma. Linear «lament#. 7 

8 
Copyrî t (e) 1989, Mark A. Liaba and Iowa State 9 
Univeraity 10 

11 
ALL RICTTS RESERVED 12 

13 
Laat modified : 10/29/88 4:29 PM 14 

J 15 
16 

interface 17 
18 

uaea B7Def, 19 
B7Utila, 20 
TFArr, 21 
B7Data, 22 
B7Frap; 23 

24 
Procedure Integrate Boundary; 25 

26 
procedure Integrate_Interior; 27 
{- integrates from each interior node to determine potential and flux values } 28 

29 
{• ' " ' ' "" ) 30 
inplMDantatien 31 

32 
type 33 
Integrel_Veo" Arrayd. .8] of float; 34 
Integral Coafa • array[l..3,1..2] of float; 35 

36 
var 37 
Integral: Integral_Vec; 38 
Looall, Looal2, Normal, Alpha, Length, 39 
Sign_Rormal, Diatance, Conductivity, FundSol ; float; 40 
SourceCoorda ; CoordinatePair; 41 

42 
{->»Int_Lin_SF<« } 43 
( Routine to calculate integral# for linear ahape functions on the boundary} 44 
{ Last Modified — 12/08/87. } 45 
{ Note: Integration in aaaumad positive in the CLOCKWISE direction. } 46 
{ } 47 
PROCEDURE Int_Lin_8F( Where ; NodeType; 48 

Normal, El, E2 : float; { Local coord of bnd. elamnt } 49 
var Integral : Integral Vac); SO 

51 
CONST 52 

Zero lol - l.OE-S; 53 
54 

VAR 55 
R_Sqr, 56 
Ln_R_Sqr, 57 
Arctn, 58 
Xi, 59 
LnR : array[1..2] of float; 60 
E2_E1 : float; 61 
J : Integer; 62 

63 
Function INTKJiInteger): float; ( This integral is used for the } 64 
BEGIN { boundary integration. As such } 65 

IF Normal - 0.0 than { it will have a singularity when } 66 
BEGIN { the source and the field point } 67 

IF Xi[J] " 0.0 then INIl 0.0 { are the same, } 68 
ELSE INTl :- -1.0 / (2.0 * Xi[J]); 69 

END 70 
ELSE 71 

INTl ArctnlJ] / Normal; 72 
END; 73 

74 
Function INT2(J:Integer); float; { Same here, see INTl } 75 
Begin 76 
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IP Hozmal - 0.0 bhm 1 
BEOIN 2 

IF Xt[J] - 0.0 th#n INT2 0.0 3 
ELSE IRT2 Ln(ABS(Xl(J])): 4 

ZHD S 
ELSE 6 
m2 0.3 • toJR.SqrUlî 7 

End; 8 
9 

Function IMT3(J:Int*##r): float; ( Ih« taat of th* int##r#l# «ta aithar) 10 
Bagln ( not uaad for boundary Intasrations, } 11 

IIIT3 :*• X1[J] - Hoznal * AtotnUl; { or contain no non-lntagrabla #in#u. } 12 
End; 13 

14 
Function INI4(J:Inta#ar): float; IS 
Bagin 16 

IF Normal " 0.0 than 17 
IIIT4 .— -1.0 / <3.0 * Pow<XitJl,3.0)) 18 

ELSE 19 
IHT4 Xi[J]/<2.0 * R_Sqr(J] * Pow<Normal,2.0)) + 20 

<Arctn[J] / <2.0 * Pow<Normal,3.0))); 21 
End; 22 

23 
Function INTSCJiIntagar): float; 24 
Bagin 25 

IF Normal - 0.0 than 26 
INI3 -1.0/<2.0 * Pow<Xl(Jl,2.0)) 27 

ELSE 28 
INIS - 1.0 / <2.0 • R_SqrtJl); 29 

End; 30 
31 

Function INT6<J:Intagar): float; 32 
Bagin 33 

IF Normal » 0.0 than 34 
INT6 - 1.0 / <2.0 • XitJJ) 35 

ELSE 36 
IHT8 - <Xi[Jl / <2.0 * R_SqttJl)) + <Arotn[J] / <2.0 * Normal)): 37 

End; 38 
39 

Function INT7<J:Intagar); float; 40 
Bagin 41 

INT7 0.25 • R_Sqr(JJ • <Ln_R_Sqr(J] - 1.0); 42 
End; 43 

44 
Function INT8<J:Intagar): float; 45 
Bagin 46 

INT8 0.5 * <Xi[Jl * Ln_R_Sqt(Jl - 2.0 • Xi(Jl + 2.0 • Normal • ArctnUDj 47 
End; 48 

49 
BEGIN 50 

Fillchar<Intagral,Sisaof<Intagral),0); 51 
Xi(l] El; 52 
Xl(2] Z2; 53 
E2_El E2 - El; 54 
FOR J :• 1 to 2 do 55 
BEGIN 56 

R_Sqr[J] Normal * Normal + XKJl • XiCJl; 57 
IF Aba<Normal) < Zaro_Tol than 58 

ArctnlJ] 0.0 ~ 59 
ELSE 60 

ArctntJ] AroTan(Xl[J]/Normal); 61 
IF R_Sqr[j] " 0.0 than 62 

Ln_B_8qr[j] 0.0 63 
alaa 64 

Ln_R_SqrtdJ :• Ln<R_Sqr[j]); 65 
and; 66 
Caaa whara of 67 
Boundary : bagin 68 

Intagraltl] Intl<2) - IntKl); 69 
Intagral[2] Int2(2) - Int2<l); 70 
IntagralI7] Int7<2) - Int7<l); 71 
IntagralCB] Int8(2) - IntB<l); 72 

and; 73 
74 

Intarior : bagin 75 
Intagraltl] Intl<2) - IntKl); 76 
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Int##rmU2] ;• Int2(2) - Int2(l); 
Int«8r«l(31 - Int3(l); 
Int«sxal(4] Int*(2) - Int4(l); 
IntairaliS] InbS(2) - IntS(l); 
lnta#ral[0] Int8(2) - Inb6U); 
Inta(tal(7] Int7(2) - Inb7(l); 
InbagraliS] Int8(2) - IntSd); 

and; 
and; { oaaa } 

and; { of Int_Lin_SP} 

{ —»>IntaBtata_Boundaty«< 
{ Inoludaa ooda"for doubly daflnad flux at boundary oomar 
{ Inoludaa coda for imiltlpla aonaa 
{ Laat modified: 10/20/88 3:07 IM 

Prooadura Inbasrata_8oundary; 

typa ElamanbEnd ~ (A,B); 

Var Xa : Intagral.Coafa; 
Row, Roda, SoureaRun, Fiald, LaatDOF, SouroaDOF : OlobalOof; 
SouroaERua, FlaldKRun : ElanantRunbar; 
SouroaEl, FialdEl : ElomanbTypa; 
LaatElIypa : BHodaTypa; 
ISoureaEl, TFialdEl, FFialdEl, HFialdEl : lan̂ El; 
HalUuf ; SourcaHoda; 
LaabRoda, OKboCollooata : boolean; 
Zona ; byte; 

function AngleAtRodeCZone : byte; 
var ThiaSouroa : GlobalOOF; 
var ThiaSoureaEl : TenpEl; 
Where : EleoenbEnd) : float; 

{- rebuma angle ab node given aource index in local element lisb } 
var ObherEl ; Teoq̂ El; 

ObherEHuffl : GlobalOof; 
TaapAl̂ a : floab; 

begin 
with ZoneDtZone] do 
oaaa where of 
A : begin { at firit node of element } 

ObherERua WrapHord(RufflElems,pred(IhlaSouroe)); 
GeblElemenb(lempElliab, ObherEHum, OtherEl); 
GetAlpha(OtherEl.A.Coord, 

ThiaSoureaEl.A.Coord, 
ThiaSoureaEl.B.Coord, 
TampAlpha); 

and; 
B : begin ( at laat node of element } 

OtherERum WrapWordCRumElema,auoo(IhiaSouree)); 
GetTElementdempElLiat, OtherERum, OtherEl); 
GetAlpha(ThiaSoureaEl.A.Coord, 

ThiaSoureaEl.B.Coord, 
OtherEl.B.Coord, 
TampAlpha); 

and; 
end; { eaaa } 
AngleAtRode :• TampAlpha; 

end; ( function AngleAtRode } 

procedure GetInbCoefa(var Ka ; IntegralJCoefa); 
{- retuma proper Integral eoafficienta'for addition to ayatem of equations } 
{ implements LIREAR elemenba for now } 
var Multl, Mult2 : float; 
begin 
( Check on direction frcm source point to element } 
Slgn_Hotmal -(TFialdEl.A.Coord(X] - SourcaCoordalX]) * 

(TFialdEl.B.CoordlY] - TFialdEl.A.CoordlY]) 
+(TFieldEl.B.Coord(X] - TFieldEl.A.CoordtX]) * 
(TFieldEl.A.Coordiï] - SouzceCoordsIY]); 

if FieldEl.ElSFType - Reg then 
begin 
Ketl.ll (LocaU * 112 - IID/Length; 
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K«[l,2] (111 - Loeall * I12)/Lni8th; 1 
K«I2,1] (LoeaU * 122 - I21)/Lansth; 2 
Ka(2,2i (121 - Looall * I22)/Lan*th; 3 
and 4 
alaa S 
bagin 6 
oaaa FlaldEl.ElSFTypa of 7 
L01ao:basln 8 

Multl *.0/(3.0*Langth); 9 
Mult2 4.0/3.0 + Multl * Loeall; 10 

and; 11 
TDiaotbagln 12 

Multl 4.0/(3.0*Langth); 13 
MuLt2 1.0 + Multl * Looall; U 

and; 15 
Dlao :bagln 16 

ttaltl 2.0/Langth; 17 
Mult2 1.3 + Multl * Looall; 18 

and; 19 
and; ( oaaa } 20 
Ka[l,l] Mult2 * 112 - Multl * 111; 21 
Xa[l,2] Multl * 111 - (Mult2-1.0) • 112; 22 
Kat2,l] Mult2 * 122 - Multl * 121; 23 
Ka[2,2] Multl * 121 - (Mult2-1.0) * 122; 24 

and; { alaa } 25 
if SouroaDOF " FlaldEl.A.OOF than Xa[l,l] -Alpha; { chaok for sing, point } 26 
If SouroaDOF " FlaldEl.B.OOF than 27 
if (FialdEl.ElSFTypa>TOise) or (FialdEL.ElSFTypa>Disc) than 28 
Ka[l,2] -Alpha; 29 

if SouroaDOF <> FialdEl.A.DOF than Sign(Ka[l,l], Slgn_Normal); 30 
if SouroaDOF <> FialdEl.B.DOF than Sign(Ka[l,2], Sign"Normal); 31 

32 
and; { proo GatlntCoafa } 33 

34 
procadura PlaoaCoafa(ElSFTypa : ElanantSFZypa; 35 

Prav, Ihia, Nast : Tan̂ l; 36 
Xa ; Intagral_Coafa; 37 
SouroaNum, Fialdl, Fiald2 : GlobalDof; 38 
TypaofElaoiant : BNodaTypa; 39 
Xx, Ky , ThataX : float); 40 

{- plaoaa intagral coafa into syatao of aq.a basad on noda typa } 41 
var ZonaSign ; ahortint; 42 
bagin 43 
oaaa TypaofElaaant of 44 

45 
Phi : bagin 46 

{ first noda } 47 
FVfloat(H. Row, Fialdl, 6VFloat(B, Row, Fialdl) - (Ka[2,l])); 48 
PVfloat(F, Row, 1, GVfloatCF, Row, 1) - (Xx«Katl,l] * This.A.KncwnVal)); 49 

SO 
{ aaoond noda } 31 
PVfloat(H, Row, Fiald2, GVFloat(H, Row, Fiald2) - (Ka[2,2])); 52 
PVfloat{F. Row, 1, OVfloatCF, Row, 1) - (Xx*Ka[l,2] * Thia.B.KnownVaD); 53 

and; { Phi } 54 
53 

DPhi, 56 
Wall: bagin 57 

{ first noda } 58 
if (Frav.ElTypa <> Phi) or (ElSFIypa - Disc) or (ElSFTypa - LDisc) then 59 
PVfloat(H, Row, Fialdl, GVFloat<H, Row, Fialdl) + (X**Ka(l,1])) 60 

alaa 61 
PVfloat(F, Row, 1, SVFloatCF, Row, 1) - (Xx*Xa[l,l] * Prav.B.KnownVal)); 62 

PVfloatCF, Row, 1, OVfloat<F, Row, 1) + (Xa[2.1] • This.A.KncwnVal)); 63 
64 

{ aaeond noda } 65 
if (Haxt.ElTypa <> Phi) or (ElSFTypa " Disc) or (ElSFTypa • TDisc) than 66 
PVfloat(H, Row, Fiald2, GVFloat(H, Row, Fiald2) + (Kx*Ka[1.2])) 67 

alaa 68 
PVfloat(F, Row, 1, 6VFloat(F, Row, 1) - (Xx*Xa[l,2] * Naxt.A.KnownVaX)); 69 

PVfloat(F. Row, 1, GVfloat(F, Row, 1) + (Ka[2,2) * This.B.KnownVal)); 70 
and; ( DPhi } 71 

72 
Intr; bagin 73 

{ nota; doubla DOFa for aach intr nodaa, PHI dof ALWAYS 1st } 74 
if FialdENuffl < 0 than ZonaSign :• -1 alsa ZonaSign 1; 75 
( Phi unknown DOF } 76 



www.manaraa.com

102 

mioab(H, Row, FlaUl, OVFloab(H, Sow, Flaldl) + (Kx*Katl,l])); 1 
FV£Ioat(H, Row, FialdZ, GVFloat(H, Row, Flald2) + (Ks*Ka(l,2])); 2 
( DFhl Unknown DOF } 3 
FVCloat(H, Row, auco(Fialdl), 4 

ZonaSign * (GVFleat(H, Row, auoe(Flaldl)) - (Ka[2,ll))); 5 
FV£loat(B, Row, auoe(Flald2), 6 

ZonaSign * (GVFXoat(H, Row, auoe(Fiald2)) - (Ka[2,2]))); 7 
and; { Intr } B 

a 
and; { oaaa } 10 
and; { ptoc PlaoaCoafa } 11 

12 
ptooadura 0<iAtoundBoundaiy(Zona ; byba); 13 
{- parfoima boundary Intagratlon around lona boundary } 14 

var Flald : OlobalOOF; IS 
bagin 16 
with ZonaDIZona] do 17 
bagin 18 
{ aat up for firat fiald alamanb} 19 
QatTElaownt ( TaoqpZlLiat, NumElama, PFialdEl ) ; 20 
OatlElamant(TampEUiat, 1, TFialdEL); 21 
for Fiald 1 bo NumElama do 22 
bagin 23 
FialdENum OatElamantMum(Elamanta, Fiald); 24 
OatElamanb(FialdENun, FialdEl); 25 
6abTEXamanb(TaapElLiab,wrapword(NumElama, auoe(Fiald)),NFialdEI); 26 
GatLooalCoorda(SourcaCoorda, 27 

Woda'lFialdEl.A.Noda], 28 
GNoda'tFialdEl.B.Nodal, 29 
Normal, Looall, Looal2, SinPai, CoSinFai); 30 

Int_Lin 8F(Boundary,Normal, Looall, Looal2, Inbagral); 31 
111 normal * Intagral[2i; 32 
112 Normal * Intagralîlî; 33 
121 Intagral(71; 34 
122 IntagralCSj; 35 
Langth Looal2 - Looall; 36 

37 
GablntCoafa(Ka); 38 
with FialdEl do 39 
PlaoaCoafa(FialdEl.ElSFTypa, PFialdEl, TFialdEl, NFialdEI, Ka, 40 

Row, A.DOF, B.DOF, A.NIypa, Kx, Ky, ThabaX); 41 
42 

{ awap tamp alamanta > 43 
PFialdEl TFialdEl; 44 
TFialdEl NFialdEI;. 45 

46 
and; { Fiald - Loop } 47 

and; { with } 48 
and; { of proc GoAroundBoundary } 49 

50 
51 

prooadura AddSouroaa(Zona : byta; SourcaDOF ; OlobalOOF ; 52 
WharaSourca ; Nodalypa); S3 

{- eollooataa from boundary nodaa to walla -} 54 
{- laat modifiad: 11/28/88 7:13 EM -} 55 

var Fiald : GlobalOOF; 56 
TWall ; SouroaNoda; 57 

bagin 58 
with ZonaDIZona] do 59 
bagin 60 
if NumWalla <- 0 than Exit; 61 
for Fiald ;• 1 to NumWalla do 62 
bagin 63 
GatWalKZona, Fiald, TWall); 64 
Diatanea :• Radius(SouroaCoorda[x],SourcaCoord8(y], 65 

TWall.Coord[x],TWall,CoordCy]); 66 
oaaa WharaSourca of 67 

68 
Boundary ; 69 
bagin 70 
FundSoL -ln(Dlatanoa); 71 
oaaa TWall.SourcaTypa of 72 
SFlow : PvFloat(F,Row,l, 73 

evFloat(F,Row,l) + FundSol * TWall.Flow); 74 
75 

SHaad ; PvFloat(H,Row,TWall.Dof, -FundSol); 76 
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•nd; 1 
and; ( Boundary } 2 

3 
Source : 4 
begin S 
it IHell.DOF " SoureeDOF then 6 
bettn 7 
FundSol -ln(IHall.Kadiua); 8 
ease IHell.SoureeType of g 
SFIow ; 10 
begin 11 
FVFloat(F,Row,l,OVFloat(F,Ro«f,l) + FundSol * IWall.Flow); 12 
tVFloat(H,RoN,IWall.DOF,-2*P1 * Conductivity); 13 

end; 14 
15 

SBead : 16 
begin 17 
FVFloat(F,Row,l, OVFloat(F,Row, 1) + IB 

2*Pi*TWell.Head * Conductivity ); 19 
FVFloat(H,Row,IHell.DOF, -FundSol); 20 

end; 21 
end; { caaa } 22 

end 23 
el e 24 
begin 2S 
Oiatanca Radius(SourcaCoorda[x],SourceCoordB[y], 26 

I«fell.Coord[x] ,IHell.Coord [y] ) ; 27 
FundSol :• -ln(Dlatanca); 28 
caaa IHell.SoureeType of 28 
SFlow : 30 
begin 31 
FVFloat(F,Ro«f, l,OVFloat(F,Row,l) + FundSol * IHall.Flow); 32 
PVFloat(H,Row,IHell.DOF, 0.0); 33 

end; 34 
35 

SHaad : FVFloat(B,Row,IHell.DOF, -FundSol); 36 
end; { ease } 37 

end; { elaa } 38 
end; ( Interior } 39 

end; { caaa } 40 
and; { field loop } 41 

end; { with } 42 
end; { of add aourcea } 43 

44 
begin { integrateJBoundary } 45 
for Zone 1 to Nua_Zones do 46 
with ZoneD[Zone] do ~ 47 
begin 48 
MakeElIiist(Zone); { set up temporary element list} 49 
Row ;• pred(StartRow); SO 
SourceNum 1; { set up for 1st element) 51 
SouroeENum 6etEl*mentNum(Elements, SourceNum); 52 
Conductivity Xx; { for now, just isotropic conductivity } S3 
GetElem*nt(SourceENum, SourceEl); 54 
OetlEleaentdempElList,SourceNum, ISourceEl); 55 
LaatDOF suce(SourceEl.B.OOF); { an arbitrary DOF) 56 
LastElTypa :• SourceEl.B.NIype; S7 
LaatNoda False; 58 
idiile SourceNum <• NumElems do S9 
begin 60 
{ select source point for collocation } 61 
if LaatNoda then { check to see if has been oolloc} 62 
caaa SourceEl.ElSFIype of 63 
lOiac, Diac : begin 64 

Alpha Pi; 65 
SourceCoords :• ISourceEl.B.Coord; 66 
SoureeDOF ;• SourceEl.B.DOF; 67 
OKtoCollocata :• True; 68 
Row auoo(Row); 69 

end; 70 
elaa OKtoCollocata False; 71 

end { caaa } 72 
elaa 73 
begin 74 
ease SourceEl.ElSFIype of 75 
LDise, Disc; Alpha ;• Pi; 76 
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•Isa Alfh# Ansl«AtRod«(Zon«,Souto«Nun,TSouro«El,A}: 1 
rad; 2 
SoutoaCootdi TSouceaEL.A.Cootd; 3 
SoutoaDOF SouroaEl.A.DOF; 4 
OKtoCoIloeata :• Ttua; S 
Row Buoe(Row); 6 

and; 7 
1£ OKtoCoUoeata than 8 
bagin g 
OoAtoundBotmdaxy ( Zona ) ; 10 
AddSouxoaB(Zona, SoutoaDOF, Boundary); 11 

and; 12 
13 , 

If LaatRoda than 14 
basin { gat naxt alanant for aouroa oollooation} 13 
SotireaNoa suoo(SouroaNun): 16 
if SoureaNun NumElama than 17 
ba#in 18 
SouroaENun OatEIamantNua(El.aimntB, SouroaNum) ; 10 
LaatOOF SoureaEl.B.DOF; 20 
LaatEIIypa :• SoucoaEI.B.NTypa; 21 
GatElamank(8oureaENim, SouroaEl); 22 
GatIEiamant(TampElLiat, SourcaNwm, ISouroaEl); 23 
LastNoda Falsa; 24 

and; 23 
and 26 
alaa 27 
basin 28 
LastNoda :> Trua; 29 
LastDOF SouroaEl.A.DOF; 30 

and; 31 
and; { «Aila - souroa loop } 32 
{ intasrata FROM souroas to boundary nodas } 33 
for SouroaNum ;• 1 to NunMalls do 34 
basin 35 
Alpha 2.0 * Pi; 36 
GatWalKZona, SouroaNum, WallBuf); 37 
SouroaCoorda :• WallBuf.Coord; 38 
SouxoaDOF :• WallBuf.00F; 39 
Row auec(Row); 40 
OoAroundBoundary(Zona); 41 
AddSourcas(Zona, SourcaDOF, Souroa); 42 

and; 43 
ClaarElLiat(Zona); 44 

and; { sona loop } 43 
END; { prooadura intagrata boundary ) 46 

47 
{—»»Intasrata Intarior<<< } 48 
{ Last modified 12/02/88 12:53 EM } 49 
{ } 30 
prooadura Intasrata_Intarior; 31 
{- intagratas from aaoh interior node to determine potential and flux values } 32 

33 
var DX, 0Ï : float; 54 

ING : arrayil..3,1..A] of float; 55 
Phi Ke. 56 
DPhiXJCe, 57 
OFhiYJCe ; Intesral_Coefa ; 38 
IntNodeBuf : InteriorNode; 39 
Node : GlobalOOF; 60 

61 
Procedure 6etIntCoef(Var Ke ; IntegraljCoafs); 62 
besin " 63 

Ke[l,l] ;-(-ING[l,l] + Looal2 * ING(1,2] )/ 64 
(Length); 63 

66 
Ke[l,2] :-( ING(1,1] - Looall • IN6tl,21 )/ 67 

(Length); 68 
69 

Ke[2,ll :-(-ING(2,l] + ING[2,3] + Local2 * ( ING[2,21 - ING[2,4]))/ 70 
(Length); 71 

72 
Ket2.2] :-( ING[2,11 - INGt2,31 + LocaLl * (-ING[2,2] + INGt2,4]))/ 73 

(Length); 74 
73 

Ke[3,ll :-(-IHGt3,ll + ING(3,3] + Looal2 « ( ING13,2] - ING[3,4]))/ 76 
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(Ltngtb) ; 1 
2 

X«[3,2] :-( IN0t3,l] - IN0[3,3] + Looall * (-IN0[3.2] + INO(3,4]))/ 3 
(Lmstta) ; 4 

•nd; S 
6 

ptoeaduta GoAxoundBotnidaty(Zon« : byte); 7 
{- parfotiM boundary Inbagrabton around sona boundary ) 8 

var Flald : GlobalDOP; 9 
FlaldEl : BlanantTypa; 10 
FlaldSRum ; BltoantNuobat; 11 
Sign : ahottinb; 12 

bagin 13 
with ZonaO[Zono] do 14 
bagin IS 
( aab up for firat flald alanant} 16 
for Fiald ;> 1 to NumZlamm do 17 
bagin 18 
FialdZNum GatElamantNumCElamanta, Fiald); 19 
Sign aba(FialdZNum) div FialdENun; 20 
GatElaawntCFialdENum, FialdZl); 21 
with FialdEl do { ravaraa aign on boundary fluxaa if aaeondary zona } 22 
bagin 23 
A.DFhi Sign * A.DFhi; 24 
B.DFhi Sign * B.DPhi; 25 

and; 26 
OatLooalCoorda(SouxcaCoorda, 27 

GNoda'IFialdEl.A.Noda], 28 
ONoda'IFialdBl.B.Noda], 29 
Normal, Looall, Looal2, SinPai, CoSinPai); 30 

Int_LlnjSF(Intariar,Normal, Looall, Local2, Integral); 31 
Langtb Loeal2 - Looall; 32 

33 
{ Caloulata intagtaL eoaponanta for Phi } 34 
FillCbar(INS,SizaOf(ING),0); 35 
INSd.l] Normal * Intagral[2]; 36 
IN0(1,2] Normal * IntagralUl; 37 
ING[2,1] Intagral[7]; 38 
IN0(2,2] Intagral(8]; 39 
GatIntCoaf(Fhi Ka); { Nota : thara ia no 3rd tatm in Phi aq } 40 

41 
{ Caloulata intagcal eomponanta for DPhi - X diraction } 42 
FillChar(INS.SizaOf(INO),0); 43 
INS[1,1] SinPai * Intagral(2]; 44 
IHS(1,2] SinPai • IntagraltH; 45 
IN8[2,1] 2.0 * Normal * CoSinPai * Intagral(6]; 46 
IN8[2,2] 2.0 * Normal * CoSinPai * IntagralCS]; 47 
ING(2,3] 2.0 * Normal * Normal * SinPai * IntagrallS]; 48 
IN6[2,4] 2.0 • Normal * Normal * SinPai * Intagral[4]; 49 
IN6[3,1] CoSinPai * IntagrallS]; SO 
ING[3,2] CoSinPai * Intagral(2]; 51 
IN6[3,31 Normal * SinPai * Intagral[2]: 52 
ING[3,4] :• Normal * SinPai • Intagralîlï; 53 
GatIntCoaf(OPhiX Ka); 54 

55 
{ Calculate integral eomponanta for DPhi - Y diraction } 56 
FiUChar(ING,SizaOf(ING),0); 57 
ING(1,1'] ;• - CoSinPai * Intagral[2] ; 58 
INGI1,2] - CoSinPai * Intagraljl); 59 
ING(2,1] :• 2.0 * Normal * SinPai * Intagral[6]; 60 
ING[2,2] 2.0 * Normal * SinPai * IntagralCS]; 61 
ING[2,3] :• - 2.0 * Normal * Normal * CoSinPai * IntagrallS]; 62 
IN6i2,4] ;• - 2.0 * Normal * Normal * CoSinPai * Intagral[4]; 63 
ING(3,11 SinPai * IntagralOl; 84 
IN6[3,2] SinPai • Intagral[2]; 65 
IN6(3,3] :• - Normal * CoSinPai * Intagral[2]; 66 
INGt3,41 !- - Normal * CoSinPai * Intagraltl]; 67 
GatlntCoafCDPhiY Ka); 68 

69 
IntNodaBuf.Phi IntNodaBuf.Phi + 70 

Conduetivity*(Phi Ka[l,l] * FialdEl.A.Phi + 71 
Phi Ka[l,2] * FialdEl.B.Phi) - 72 

(Phi Ka[2,l] * FialdEl.A.Dphi + 73 
Phi_Ke[2,2] * FialdEl,B.DPhi); 74 

IntNodaBuf.DPhiX :• IntNodaBuf.DPhiX + Conductivity * 76 



www.manaraa.com

106 

(<DFhlXJC«Il,lI + DPhiX K«12,1J) • Fl«ldEl,A.Phl + 1 
(0FbiX_K«(1.2] + DRilX Ka[2,2]) * FlaldEl.B.Fhi) + 2 
(DFblXJC«[3,l] * FtaldEL.A.Dphl + 3 
DFblX_K«(3,2] * FialdEl.B.DFhl); 4 

IntNodaBuf.DFhlï IntNodaBut.DFhlY + Conductivity * 6 
((DChiy.XaCl.ll + DFhiyjCaI2,l]} • FlaldEl.A.Phl + 7 
(0Fhiy_Ka(1.2] + DPhiy Ka(2.2]) * FlaldEl.B.Fhl) + 8 
(DRtiyjCa[3,l] * FiaLdZl.A.Dphl + g 
OFhiy_Ka[3,2] * FialdEl.B.DFhl); 10 

11 
and; { Flald - Loop ) 12 

and; ( with } 13 
and; { ot proe OoAtoundBoundaty } 14 

IS 
prooadura AddSouroam(Zona : byta); 16 

{- adda aourca information to intarlor nodaa -) 17 
{- laat modifiad: 12/04/88 7:38 AM -} 18 

var Flald : OlobalOOF; 19 
DX, DY : float; 20 
IWall : SoureaKoda; 21 

bacin 22 
with ZonaD(Zona] do 23 
bagin 24 
if NuoMalla < 1 than Exit; 25 
for Flald 1 to NuaMalla do 26 
bagin 27 

GatWalKZona, Flald, IWall); 28 
Olatanoa :• Radiua(SouroaCoorda[x],SourcaCoorda[y], 29 

IWall.Coord(x],IWall.CoordCy]); 30 
DX (IWall.Coord(X]-SourcaCoordB(X]); 31 
DY (IWall.Coord(Y]-SoureaCoorda[Yj); 32 
IntNodaBuf.Phi IntNodaBuf.Fhl +(-} (In(Dlatanca) * IWall.Flow{* Conductivity}); 33 
IntNodaBuf.DPhlX :•> IntHodaBuf .DFhlX - 34 

(DX*IWall.Flow)/((Conductivity*}Diatanca*Oiatanca); 35 
IntNodaBuf.DFhiY IntNodaBuf.DFhlY - 36 

(DY*IWall.Flow)/({Conductlvlty*}Diatanca*Dl8tanoa); 37 
and; { flald loop } 38 

and; ( with } 39 
and; { of add aourca# } 40 

41 
bagin ( lntagrata_Intarlor } 42 

for Zona :• 1 to Nuni_Zonaa do 43 
with ZonaDIZona] do ~ 44 
bagin 45 

for Noda 1 to Numint do 46 
bagin 47 

Alidia :• 2.0 * Pi; 48 
Conductivity :• Kx; { for now, Juat iaotroplc conductivity } 49 
GatlntNoda(Zona, Noda, IntNodaBuf); 50 
SourcaCoorda :• IntNodaBuf.Coord; 51 
GoAroundBoundary(Zona); 32 
AddSourcaa(Zona); S3 
with IntNodaBuf do 54 
bagin S5 

Phi Phi / (Conductivity * Alpha); 56 
DPhlX -DFhlX{ * Conductivity} / Alpha; 57 
OFhlY -DPhiY{ * Conductivity} / Alpha; 58 

and; 59 
PutIntNoda(Zona, Noda, IntNodaBuf); 60 

and; 61 
and; ( cona loop } 62 

and; ( procadura intagrata Intarlor } 63 
64 

end. { unit B7int <***************************« } 65 
66 
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unit B7F11*; 1 
{ 2 

3 
Fzostan (MBEM - Unit B7FILE ^ 

5 
Contains fil# I/O routine#. Linear element#. 6 

7 
Copyright (o) 1989, Mark A. Liebe and Iowa State B 
Univecalty 9 

10 
ALL RI6BIS RESERVED 11 

12 
XntArray, TFVArray, and TFStrins unite eopywrite (o) 13 
1987 by TurboFower Software. Part of Turbo Profe#- 14 
•ional Froiraimer'a Toolbox V4.0. For information, IS 
oontaet: IS 

17 
TurboPower Software 18 
3109 Soott# Valley Drive, Suite 122 19 
Scott# Valley, CA 93086 20 
(408) 438-8608 21 

22 
Laat modified : 12/12/88 11:13 AM 23 

} 24 
23 

interface 26 
27 

uses DOS, 28 
B7def, 29 
TFVArray, 30 
TIRArray, 31 
TFArr, 32 
TPStrlns, 33 
B70ata; 34 

33 
Type File_Op - (Rd, Wrt); 36 

37 
procedure GET_DATA; 38 

{- loads data from text file } 39 
40 

procedure OFEH_IEXT_FILE(var File_to_Open : text; 41 
~ ~ MameJPiîe : File_name; 42 

Flag : FilejOp); 43 
{- preparea a text file for reading or writing } 44 

43 
procedure WrlteFloatTFV(Mat ; TPVarray.TPArray; Size :word; Length, Decimal : byte; 46 

Header : Titlestring); 47 
{- output formatted listing of TP virtual array to outfila } 48 

49 
procedure Dump_System(8uffix : File_Ext); 30 

{- outputs system element definitions ) 31 
32 

procedure DumpH_F(Ver H, F : TFVArray.TPArray; 33 
RowSiza, ColSise -.word; Length, Decimal ; byte; 34 

Header ; Titlestring); 33 
( dunqps matrix out in row order in a linear list } 36 

37 
procedure HriteBoundarySolution; 38 

{- formatted output for LINEAR element solution } 39 
60 

procedure WriteSourceSoluticn; 61 
{- formatted output for source solution } 62 

63 
procedure HritelnteriorSolution; 64 

{- formatted output for interior node solution } 63 
66 

procedure writeGridPile; 67 
{- prints out solution grid files for contouring } 68 

69 
procedure DumpSolVec; 70 

{- dumps solution vector to outflle } 71 
72 

( I I }  73 

implementation 74 
73 

var Hour, Min, Sec, SeclOO, 76 
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Yaar, Month, Day, DayofHaak : Word; 
Roda, Elamant, Hodalndax, Blinda*: word; 
ElamantNum : ElaoMntlluabar; 
Zona : byta; 
CurtEl : Elaoantiypa; 
CutrElRun : ElaaantRunbar; 
CutzIRoda ; Intarletlfoda; 
CutiWall ; Souzoanoda; 

oonat Zaso : byta - 0; 
RaalWldth - 12; 
Width - 11; 
Flaoaa " 4; 

ptooadura GET.DATA; 
{- loada data from taxt fila } 

VAR Dunbtypa : byta; 
CurrWall : SoureaNoda; 
CurrlRoda : IntatiorNoda; 
Diatanoa : Float; {«<} 

function SalactBIypaCDunb : byta):BNodalypa; 
{- zatuma anumatatad valua of byta dumb ) 

bagin 
oaaa Dumb of 

0 : SaLaotBIypa Phi; 
1 : SalaetBTypa DFhi; 
2 : SalaetBTy^ ;• Intr; 
3 : SalaotBT^a Wall; 

and; 
and; { of SalaetBTypa } 

function SalaetBTypa(Dumb : byta):SNodaIypa; 
{- ratuma anumaratad valua of byta dumb } 

bagin 
caaa Dumb of 

0 : SalaotSTypa :• SFlow; 
1 : SalaetBTypa BHaad; 

and; 
and; { of SalaetBTypa } 

BEGIN 
REAOdnfila.TITLE); 
WRIIEln(Outfila,TITLE); 
writaln(Outfila); 
wrltaln(OutFila,' Run data; ',Month:2,'/',Day:2,'/',Yaar:4, 

' Run tima: ',Hour:2,':',Min:2); 
writaln(OutFila); 

( raad in global noda coordinatas } 
Raadln(InFila,Hum_BKadaa); 
writaln(Outfila,'***> Global Hoda Information <***'); 
Writaln(Outfila,'Numbar Global Nodaa : ',Num BNodas); 
writalii(Outfila); ~ 
writalaCOutFila,'—> Global Noda Définition <—'): 
writaln(Outfila); 
writaln(OutFila,'Noda X-Coor Ï-Coor'); 
w i t a l a ( O u t F i l a ,  ' - - - - -
writaln(Outfila) ; 
for Noda 1 to Num BNodaa do 

Raadln(InFila,Nodaïndax,GNoda*INodaIndax]tX],GNoda'[Hodalndax][Ï]); 
for Noda 1 to Num BNodas do 

Writaln(0utfila,Hod*:4. ' ' .GNoda"[Noda] [X] ;RaalWidth, ' ' ,6Node*[Node] [Y] :Real.Hidth) ; 

{ raad in global alamant definition# } 
raadln(InFila,Num_Boundariaa); 
writaln(Outfila);~ 
writaln(Outfila,'***> Global Element Information <***'); 
«ritaln(Outfila); 
Writaln(Outfila,'Number Global Elementa : ',Hum_Boundariaa); 
wrlteln(Outfila); ~ 
writaln(OutFil*,' ——> Global Element Definition < 
writeln(Outfile); 
ffriteln(Outfile, ' First node Second node'); 

1 
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16 
19 
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23 
24 
23 
26 
27 
28 
29 
30 
31 
32 
33 
34 
33 
36 
37 
38 
39 
40 
41 
42 
43 
44 
43 
46 
47 
48 
49 
30 
31 
32 
33 
34 
33 
36 
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writaln(OubFll«,'EIMI Nod# Typ# Known Valu# I Nod# Typ# Known Valu# '); 1 
#»»»—j mmmm «•«_<• |  * —— » w*** —')? 2 

for Elanant 1 to Num_Bo\mdarlaa do 3 
bagln ~ 4 

x#ad(InFlI#,EIInd#x); S 
with OBlaa*[BIInd#x] do 6 
b#Bln 7 

( tak# oar# of A nod# atuff } 8 
raad(InFlla,A,Nod#,DunbTypa): 9 
A.Niyp# S#laotBIypa(l>unbT^a); 10 
oaa# A.NTyp# of { writ# out nod# A info } 11 

Fhi : t#ad(InFiL#,A.Fhi); 12 
13 

dPhi: r#ad(InFiIa,A.DFhi): 14 
15 

ala# b#gin 16 
r#ad(InFil#,A.DFhi); 17 
A.DChi 0.0; { ainea thia la a fak# valu#, oanoal h#xa } 18 

#nd; 19 
#nd; { oaaa } 20 

21 
{ taka oara of B noda atuff } 22 
RaaddnFlIa.B.Noda.DunbTypa); 23 
B.NTypa SalaotBTypa(DumbT^a); 24 
caaa B.NTypa of { writa out noda B info } 25 

Fhi ; raadln(InFlla,B.Fhi); 26 
27 

dFhi: raadlndnFila.B.OFhi); 28 
29 

alaa bagin 30 
raad(InFiIa,B.DFhi); 31 
B.DFhi 0.0; ( ainoa thia ia a faka valua, oaneal hara } 32 

•nd; 33 
and; { oaaa } 34 

and; { with } 35 
and; { for } 36 
for Zlamant 1 to Num_Boundariaa do 37 
with GZlaai* [ElaDant] do" 38 
bagin 39 

oaaa A.NTypa of { writa out noda A info } 40 
Phi ; writa(OutFila,Elanant;4,'I'• 41 

A.Noda;4,' ', 42 
BlypaStrtA.HI^a], ' ', 43 
A.FhitRaalHidth,' |'); 44 

dPhi: wrlta(0utFila,EIaaant:4,'I'> 45 
A.Noda:4,' ', 46 
BTypaStr [A.NI^al, ' ', 47 
A.OFhi:RaalWidth,' |'); 48 

alaa writa(OutFila,Elanant:4,'|', 49 
A.Noda:4,' 50 
BlypaStrlA.NT^a], ' ', 51 
Cantar(RaalWidth),' |'); 52 

> and; { oaaa } 53 
54 

oaaa B.NTypa of { writa out noda B info } 55 
Fhi : writ#ln(0utfil#,B.Nod#:4,' ', 56 

BIypaStr(B.NTypai,' ', 57 
B.Fhi:RaalHidth); 58 

dPhi: wrltaln(0utfila,B.Noda:4,' ', 59 
BTypaStr[B,NTypal,' 60 
B.DFhi:RaalHidth); 61 

alaa writaln(0utfila,B.Noda:4,' 62 
BIypaStr[B.NTypa],' ', 63 
Cantar(.RaalWidth)); 64 

and; { caaa ) 65 
#nd; 66 
{ raad in zona information } 67 
raadln(InFila,Nua_Zonaa); 68 
w r l t a l n ( O u t f i L # ) 6 9  
writ#ln(Outfil#,'***> Zon# Information «>**'); 70 
writ#ln(Outfil#); 71 
Hrit#ln(OutfiI#,'Numb#r Zonaa: ',Num_Zonaa); 72 
writaln(Outfila); ~ 73 
if Num_Zonaa > Ma%_Zcnaa than 74 
bagin ~ 75 

writalnCO'Sorry, too many zonaa11 ' ) ; 76 
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hmit(l); 1 
•nd; 2 
tot Zona 1 to Num_Zon#» do 3 
with ZonaDIZonol do 4 
begin S 

writalnCOutFilo,'—» Zon# ',Zon«:2,' data*—'); 6 
READln(InPIl#,NubEl«ma, NumWalla, Rumlnt, Kx, Ky, ThotaX); 7 
writoln(0ut£ilo,' Runtoar Boundary Eltoanta: '.NUOEIMIS); 8 
wrltaln(Outfila,' Nunbar Walla: '.MunHalla}; 9 
wrltalntOtttflla,' Nunbar Intarior Pointa: '.Numlnt): 10 
writalji(Out£lla. ' Kx: MCs;RaalHidth}; 11 
wxitaln(Out£ila, ' Ky: ',Ky:RaalWidth); 12 
ifritatn(Out<ila, < Thata-x: ' ,ThataX:RaalWidth) ; 13 
writaln(Outfila); 14 

13 
{ maka dynamic axtaya for thia lona } 16 
if NuadElaow > 0 than 17 
bagin 18 

IPRArray.MakaA(Elamantm, NumElama, 1, Siaaof(ElamantNumbar)); 19 
ElanantNum 0; 20 
IfRAxray.ClaarA(Elaaanta, ElamantNum.Faatinit); 21 

and; 22 
if NumWalla > 0 than 23 
bagin 24 

TFRArtay.MakaA(Halla, NuoMalla, 1, SlcaO£(SourcaNoda)); 25 
FillChar(CurrWall,Siiaof(CurrWall),0); 26 
IIRArray.ClaarA(Halla, CurrWall,Faatinit); 27 

and; 28 
if NumZnt > 0 than 29 
bagin 30 

TPRArray.MakaA(IntNodaa, Numint, 1, SisaOfCIntariorNoda)); 31 
FillChar(CurrlNoda,Siaaof(CurrlNoda),0}; 32 
TPRArray.ClaarA(IntNodaa, CurrlNoda,Faatinit); 33 

and; 34 
33 

{raad in boundary alamant liât for this zona } 36 
writalnCOutFila,' Global alamant liât — Zona ',Zona:3); 37 
writaln(OutFila); 38 
writaln(OutFila,' Local Global '); 39 
Mritaln(OutFila, ' ----- '); 40 
if NumElama > 0 than 41 
for Elamant ;• 0 to prad(NumElama) do 42 
bagin 43 

Raad(InFila,ElamantNum); 44 
TERArray, SatA(Elaa)anta, Elamant, 0, ElamentNum) ; 4 5 
if Ealn(InFila) or (lORasult <> 0) than raadln(Infila); 46 
*ritaln(Outfila,' ',auoc(Elamant):4,' ',ElamantNum:4); 47 

and; 48 
49 

(raad in wall information for this zona } SO 
writaln(OutFila); 51 
writaln(OutFila,' Wall definition — Zona ',Zona:3); 52 
writaln(OutFila); 53 
writaln(OutFila,'Noda X Coor Y Coor Radius Typa Spec. Value'); 54 

— — — — — — — — J « 
if NumWalla > 0 then ' 55 
for Noda 1 to NumWells do 57 
with CurrWall do 58 
begin 59 

Raad(InFile,NodaIndax,Coordfx], Coord(y], Radius, DumbType); 60 
SourcaTypa SalectSIype(Dunblype); 61 
caaa SourceType of 62 

SFlow : readlndnfile. Flow); 63 
SBead : readlndnfile, Head); 64 

end; 65 
PutWalKZona, Nodelndex, CurrWell); 66 

end; 67 
for Noda 1 to MuoWalls do 68 
begin 69 

GetWalKZone, Noda, CurrWall); 70 
with CurrWall do 71 
caaa Souroalype of 72 

SFlow ; writeln(0utfile,Node:4,' ', 73 
Coord[x}:RealWldth,' 74 
Coord[y];RaalWidth,' ', 75 
Radiua;RealWidth,' 76 
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STypaSttCSouteaTypal,' ', 1 
FloN:RaalHldth); 2 

• SBaad ; wrltaln(0uteila,Roda:4,' 3 
Cootd[xi:RaalHldth,' 4 
Ceotdty]:RaalHidth,' S 
Radlua:RaalHldth.' 6 
STypaSttCSouroaT^a], ' ', 7 
Baad:RaalHldth)! S 

and; 9 
and; 10 

11 
{xaad in intarlot noda data for thla lona ) 12 
wtltaln(OutFlla); 13 . 
writalm(OutPila,' Inbarlor noda daflnlfclon — Zona ',Zona:3); 14 
m;ltaln(OutFlla); IS 
wcltaln(OubFlla,'Noda X Coot Y Coot'); 16 
Ntltaln(OutFlXa,—— ——17 
If Huolnb > 0 than 18 
for Noda 1 to Nunlnt do 19 
with CuxxINoda do 20 
bagin 21 

Raadln(InFila,Coord[x], Coordty]); 22 
PutlntNoda(Zona,Noda,CurtlNoda); 23 
Ntitaln(0utfila,auec(Noda):4,' 24 

Coordix]:RaalWldth,' ', 25 
Cootdiy]:RaalHldth); 26 

and; 27 
and; { of zona loop } 28 

END; { ptooaduta gat DATA } 29 
30 

{—>»Opan_Iaxt_Fila«< ) 31 
{ ptooaduta to opan taxt fliaa tor aithar raading of writing. } 32 
( > 33 
ptooaduta OFEN_TEXT_FILE(var Fila_to_Opan : taxt; 34 

~ Hama~Fiîa : Fila_nama; 35 
Fla»~: Fila_Op):~ 36 

37 
basin 38 

A«aign(Fila_To_Opan,Nama_Fila); 39 
Caaa Fias of ~ 40 

Rd ; basin 41 
{$!-} 42 
Ra#at(Fila_Io Opan); 43 
{$!+> 44 
if lOraiult <> 0 than 45 
basin 46 

writalnCG); 47 
writalnCFiia doaa not axiat '); 48 
halt; {Stop prostam) 49 

and; 50 
and; { of Raad Caaa } 51 

Wrt: Rawrita(Flla_To_Opan); 52 
and; { of caaa } 53 

and; { of OPEN TEXT FILE } 54 
55 
56 

ptooaduta HrltaFloatTFV(Mat: TFVArtay.IPAtray; Siza :word; Length, Decimal : byta; 57 
Haadar : Titlaatrins); 58 

{- output fomattad liatins of IP virtual array to outfila } 59 
60 

Conat Pasawidth " 80; 61 
62 

Vat 63 
Min, Max, MdI, Row, Col, Numbatval : word; 64 
Blank, Padatrl, Padabr2 : atrinsIlO]; 65 

66 
BEGIN 67 

Blank ' '; 68 
Nunbarval (Pasawidth - 5) div (length + 1) - 1; 69 
Max 0; 70 
Writaln(Outfila); 71 
Writaln(Outflla,Header); 72 
Writeln(Outfila); 73 
Repeat 74 

Min Max + 1; 75 
Max :• Min + Nusbatval; 76 
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Mil :• SiM - Min; 1 
If (Mil < Runberval + 1) than Max Slaa; 2 
HElta(Outflla, 'R/C'); 3 
FadSitl eopy(81aiik,l,Lansth dlv 2 + 1); * 
Padatr2 copy(Blank,1,Langth div 2-2); S 
For Col Mln to Max do Heita(Out£lla,Fadatrl,Col:3,Paditr2); 6 
Writalm(Outfila); 7 
For Row :• 1 to Siia do 8 
Begin g 

Writa(Outfil#,Row:3,' '); 10 
For Col Min To Max do Hrite(Out£ile, 11 

gvfloat(Mat,Row,Col):Length:Daoimal,' '}; 12 
Hrltaln(Ottt£ila); « 13 

End; 14 
Hrltaln(Out£ila); IS 

Until Max >" Sisa; 18 
Hriteln(Out£ila, • '); 17 

End; { procedure write matrix } 18 
19 

procedure Dump_Systea(Su££lx : File_Ext); 20 
{- outputs ayatem element définitîona } 21 

var Dunpfile ; text; 22 
Dua^ileName : File Name; 23 

24 
begin 23 

DumpFileName ForoeExtansion(OutFlleNama,Suffix); 26 
(>pen Text_File(DumpFile,DuaipfileNama,Wrt) ; 27 
for Zone :• 1 to Nua_Zones do 28 
with ZoneOtZone] do ~ 29 
begin 30 

writeln(DunpFlle,'Zone : ' ,Zone:3, ' data duimp ++++++'); 31 
writelm(Dum^ile) ; 32 
writeln(Oun^ile,'StartRow ; '.StartRow); 33 
writeln(Dumpfile); 34 
for Element :• 1 to NianElems do 3S 
begin 36 

CurrElMum :• GetEl#mentNum(Zlements,Element) ; 37 
OetElement(CurrElNum,CurrEl); 38 
with CurrEl do 39 
begin 40 

writeln(DumpFIle,'Zonal El #: ',Elemsnt:3,' '.'Global El #: ',CurrElNum:S); 41 
writelm(DumpFile.'Element SF Type: ',ElSFTypeStr[ElSFType]); 42 
writeln(Ductile,'Anode ',A.Node:S, ' ', 43 

'ADOF '.A.DOF :3,' |', 44 
'Bnode ',B.Node:S,' ', 4S 
'BDOF '.B.DOF :S) 46 

end; 47 
end; 48 

end; 49 
close(DufflpFile); SO 

end; SI 
52 

procedure DumpH_F(Var H, F : TPVArray.TPArray; S3 
RowSize, ColSize :word; Length, Decimal : byte; 54 

Header : Titleatring); 55 
{ dumps matrix out in row order in a linear Hat } 56 

Var 57 
Mnl, Row, Col, Numberval : byte; 58 
Min, Max : float; 59 
OrdFile : text; 60 
GrdFileName : File Name; 81 

62 
BEGIN 63 

GrdFileName ForoeExtenslon(OutFileName,'MAI'); 64 
A8aign(0cdFila,GrdFileName); 65 
Rawrite(GrdFile); 86 
Min 0.0; 87 
Max 0.0; 68 
( find max-min of mat } 69 
for Row 1 to RowSise do 70 
begin 71 
if Min > gvfloat(F,Row,l) then Min gvfloat(F,Row,l); 72 
if Max < gv£loat(F,Row,1) than Max ;• gvfloat(F,Row,l}; 73 
for col ;> 1 to ColSize do 74 
begin 75 
if Min > gvfloat(H,Row,CoI) than Min :• gvfloat(H,Row,Col); 76 



www.manaraa.com

113 

if Max < 8vfloab(H,Row,Col) than Max 8v£loat(B,RoH,Col); 1 
and; 2 

and; 3 
HtltalnCOtdFila.'DSAA'); 4 
Hritaln(OtdFil«,CoISisa 1,' '.RowSisa); S 
Wrib«ln(OtdFil«.l,' ',Col8i:#+l); 6 
Hrit«ln(OrdFila,l,' '.RotfSica); 7 
Hribalii(OtdFlla,Min: 12, ' ' ,Max: 12) ; 8 
for Row 1 to RowSima do 9 
bagln 10 

For Col !• 1 to ColSiaa do 11 
Hrit*(OrdFll*,gv£loat(B,Row,Col):Lansth:Daoifflal,' '); 12 

Hrit*ln(OrdFil«,(v£loab(F,Row, 1):L#n*th:D»oimal); 13 
and; 14 
Cloaa(OrdFila); 15 

End; { prooadura writ* matrix } 18 
17 

prooadura HritaBoundarySolution; 18 
(- formattad output for LINEAR *l#m#nt solution } 19 

20 
Const Ruobsrval - 2; 21 

22 
Var 23 

Min, Max, Mhl, J : byta; 24 
Sign : shortint; 25 
Conductivity : float; 26 

27 
BEGIN 28 

HritalnCOutfil*); 29 
Writ*ln(OutfiI*,'>» Boundary vaLuas 30 
Hritaln(Outfils); 31 
For Zona 1 to Num_Zonaa do 32 
with ZonaDtZona] do ~ 33 
bagin 34 

Conductivity Kx; {isotropic for now} 35 
Max 0; 36 
writ*ln(Outfila,'Zona : ',Zona:3); 37 
Rapaat 38 

Min Max + 1; 39 
Max Min + Nuobsrval; 40 
MNl NufflElams - Min; 41 
If (Mil < Nunbarval + 1) than Max ;• NumElams; 42 
Hrita(Outfils, 'Zona Elam'); 43 
For J Min to Max do Hrita(0utfila,C*ntar(LonB2Str(J),Wldth*2)); 44 
Hrltaln(Outfila); 45 
writa(OutFlla, 'Global El'); 46 
For J Min to Max do 47 
bagin 48 

CurrElNum GatElamantNum(Elamant*, J); 49 
writa(OutFila,Cantar(Long2Str(CurrElNum),Width*2)); 50 

and; 51 
writaln(OutFila); 52 
writa(OutFila,'Elam. Noda '); 53 
for J Min to Max do writa(OutFil*,C*ntarCh('A',.Width), 54 

CantarChCB','-',Width)); 55 
writaln(OutFils); 56 
Writa(Outfila,'X-coor '); 57 
For J :• Min To Max do 58 
bagin 59 

CurrElNum GatElamantNum(Elaasnt8, J); 60 
GatElam*nt(CurrElNum, CurrEl); 61 
Writa(Outfila,GNoda'[CurrEl.A.Noda][X]:Width;Plaças, 62 

GNoda'tCurrEl.B.Noda][X]:Wldth;Plaças); 63 
and; 64 
Writaln(Outfila); 65 
Writa(OutFila,'Y-coor '); 66 
For J Min To Max do 67 
bagin 68 

CurrElNum GatEl«mantNum(Elamanta, J); 69 
GatElamant(CurrElNum, CurrEl); 70 
Writ#(Outfil#,GNod#'(CurzEl.A.Nodal[Y]:Width:Plaças, 71 

GNoda-[CurrEl.B.Noda][Y]:Width:Plaoaa); 72 
and; 73 
Writaln(Outfila); 74 
Writa{Outfila,'N Flux in '); 75 
For J Min To Max do 76 
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baglB 1 
CuttElMum :• , J); 2 
Sign aba(CurtElNum) div CuwElNum; 3 
G#tEl#m#nt(CurtElMum, CurrEl); 4 
Wrlba(Oubfil«,-SlBn * CurrEl.A.DMii/Conductivity : Width:Plao #a, 3 

-Sign * CurrEl. B. DPhi/Conduotivity: Width : Plaoaa ) ; 6 
and; 7 
Writaln(Outfila); 8 
WritaCOutfila,'N Flow in '); 0 
For J Min To Max do 10 
bagin 11 

CurrElMum GabElamantNunCElaaants, J); 12 
Sign :• aba(CurrElRua) dlv CurrElHum; 13 
GatElaeiant(CurrElMum, CurrEl) ; 14 
Writa(Out£ilo,Slgn * CurrEl.A.DPhi:Width:Plaoas, 13 

Sign * CurrEl.B.DPhi:Width:Flaoaa ̂  16 
and; 17 
Writaln(Outfila): 18 
Writa(Outfila,'Fotintial '); 19 
For J Min To Max do 20 
bagin 21 

CurrElNun :• 0atElamantNuni(Elaniant8, J); 22 
GatElama«t(CurrElNum, CurrEl); 23 
Writa(Out£lla,CutrEl.A.Fhl;Hidth;Flaeaa,CurrEl.B.Fhi:Width:Flaoas); 24 

and; 23 
Writaln(Outfila); 26 
wrltaln(OutFila); 27 

Until Max » NuuiElama; 28 
and; { with/for } 29 

End; { prooadura writ# boundary aolution } 30 
31 

prooadura WritaSourcaSolution; 32 
{- formattad output for aouroa aolution } 33 

34 
Const Muobarval * 5; 33 

36 
Var 37 

Min, Max, All, J : byta; 38 
39 
40 

BEGIN 41 
Writ8ln(0utfila); 42 
Writaln(Outfila,'»> Soutca/sink valuas '); 43 
Writaln(Outfila); 44 
For Zona ;• 1 to Num_Zonaa do 43 
with ZonaDtZona] do ~ 46 
bagin 47 

Max 0; 48 
writaln(Outfila,'Zona : ',Zona:3); 49 
if NuaMalla > 0 than 30 
Rapaat 51 

Min Max + 1; 32 
Max Min + Nunbarval; 53 
MNl NunWalls - Min; 54 
If (Mhl < Nuobarval +1) than Max :• NumWalls; 35 
WritaCOutfila, 'Wall '); 56 
For J Min to Max do Wrlta(0utflla,Cant#r(Long2Str(J),Width)); 57 
Writaln(Outfils); 58 
Writa(Outfila,'X-coor '); 39 
For J Min To Max do 60 
bagin 61 

GtatWall(Zona,J,CurxWall); 62 
Writ#(Outfila,CurrWall.Coord[X];Width;FIaoas); 63 

and; 64 
Writaln(Outfila); 65 
Writa(OutFila,'Y-ooor '); 66 
For J Min To Max do 67 
bagin 68 

GatWall(Zona,J,CurrWall); 69 
Writa(Outfila,CurrWall.Coord(Y]:Width;Placaa); 70 

and; 71 
Writaln(Outfila); 72 
Writa(Outfll«,'FotantlaL '); 73 
For J Min To Max do 74 
bagin 73 

GatWall(Zona,J,CurrWall); 76 
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Htltt(Out£il«,CuttH«ll,HMd:Hldth:FlaoM> ; 1 
•nd; 2 
Mrlt«ln(OutflX«): 3 
Htlt«(Out£lla.'Flow (In-) '); 4 
For J :• Hln To Max do S 
b#*in 6 

G«tH«ll(Zono,J,CurrW*ll); 7 
Writ# (Outfil#,CurrWall.Plow;Width:Plmoam); 8 

and; 9 
Writaln(Out£ila)i 10 
writalB(OutFila); 11 

until Max » RunHalli; 12 
and; { with/for } 13 

End; { proeadura writa aourea aolutiona ) 14 
IS 

prooadura WritalntariorSolution; 16 
(- formattad output for intarior noda aolution } 17 

18 
Conat Runbarval •S; 19 

20 
var 21 

Min, Max, Nhl, J : byta; 22 
23 

b##in 24 
Writaln(Outflla); 25 
Writaln(Out£iIa,'»> Intarior noda valuaa '); 26 
WritalH(Outfila); 27 
For Zona 1 to Num_Zonaa do 28 
with ZonaDtZona] do ~ 29 
bagin 30 

Max 0; 31 
writaln(Out£ila,'Zona ; ',Zona:3); 32 
if Runlnt > 0 than 33 
Rapaat 34 

Min Max + 1; 35 
Max Min + MunbarvaL; 36 
MNl Nuolnt - Min; 37 
If (Mil < Runbarval + 1) than Max Numint; 38 
Writa(Outflla, 'Int. Noda'); 39 
For J Min to Max do Writa(Outfila,C#ntar(Long2Str(J),Width)); 40 
Writaln(Outfila); 41 
Writa(Outfila,'X-eoor '); 42 
For J :• Min To Max do 43 
bagin 44 

OatIntRoda(Zona,J.CurrlNoda); 45 
Writa(Outftla,CurrINoda.Coord[X]:Width:Placa#); 46 

•nd; 47 
Writaln(Outfila); 48 
Writa(OutFila,'Y-coor '); 49 
For J Min To Max do 50 
bagin 51 

GatIntHoda(Zona,J.CurrlNoda); 52 
Writa(Outfila,CurrlRoda.Coord[Y]:Width:Placaa); 53 

and; 54 
Writaln(Outfila); 55 
Writa(Outfila,'Fotantial '); 56 
For J Min To Max do 57 
bagin 58 

6atIntNoda(Zona,J.CurrlNoda); 59 
Writa(Outfila,CurrlNoda.Phi :Width:Places); 60 

and; 61 
Writaln(Outfila); 62 
Writa(Outfila,'Flow X-dir '); 63 
For J Min To Max do 64 
bagin 65 

6atIntNoda(Zona,J.CurrlNoda); 66 
Writa(Outfila,CurrlNoda.DFhiX:Width; Plaças); 67 

and; 68 
Writaln(Outfila); 69 
Writa(Outfila,'Flow Y-dir '); 70 
For J :• Min To Max do 71 
bagin 72 

6#tIntNod#(Zona,J,CurrlNoda); 73 
Writa(Outfila,CurrlNoda.DPhiY:Width: Pisces); 74 

and; 75 
Writaln(Outfilay; 76 
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Nrlb«ln(OutFila) ; 
Until Max » Numint; 

md; { with/for } 
End; { prooadut* writ* int*tior Solutions } 

prooadur* writaGridFila; 
{- prints out solution grid files for contouring } 

var 
Fhifila, 
DFXfil*, 
DPyfil* : t#%t; 
RiiFil*HaBM, 
DEXFil*Ilanw, 
DHFileNam*: Fila_Nam*; 

b*gin 
{ writ* out phi solution } 
PHIPil*N«m* :• Fore*Ext«nslon<OutFll*HaD*,'FBI'); 
Op*n T*xt_Fil*(FHIFil*, PHIFil*N#m*,Wrt); 
for &n* 1 to Kua_Zon*s do 
with ZonsDtZon*] do ~ 
bsgin 

{ writ* out loading nod* for *ach LINEAR alamsnt - for now } 
for El«n*nt 1 to NuoElams do 
bagin 

CurrElNum OatElaaantNumCElaaants, Elsnant); 
if CurrElNum > 0 than 
bagin 

6atElaaant(CurrElNun, CurrEl); 
with CurrEl.A do ( writa only loading nod** for now-ijuadratio nodaa will naad othar cod* 
b*gln 
if not Nod*F*[Nod*] th*n 
bagin 

Writaln(FhlFlla,6Noda'tNoda][X]:Hldth:Flaoaa,' ', 
GNoda"[Noda][Y]:Wldth:Plaças,' ', 
Phi :Width:Flaoaa); 

NodaF'tNoda] Trua; 
and; 

and; 
and; 

and; 
{ writa out interior phis } 
for Noda 1 to Numint do 
bagin 

GatlntNoda(Zona,Noda,CurrlNoda); 
with CurrlNoda do 

Writaln(FhiFila,Coord[X;:Hidth:Flaoas,' ', 
Coord[Ïj:Width:Plaças,' ', 
Phi : Width : Plaoaa ) ; 

and; 
( writa out wall haads } 
for Noda :• 1 to NuntWalls do 
bagin 

GatWall(Zona,Noda,CurrWall); 
with CurrWall do 

Writaln(PhiFlla,Coord(X]:Width:Plaças,' ', 
CootdÎY]:Wldth:Flacas,' ', 
Haad;Width:Plaças); 

and; 
and; 
Closa(PHlFila); 

DPXFilaNama ForoaExtan(ion(OutFilaNaffla,'DPX'); 
OFÏFilaNama ForoaExtanilon(OutFilaHama,'DPÏ'); 
Opan Taxt Fila(OPXFila, DPXFilaNama,Wrt); 
Opan_Taxt_Fila(DPYFila, DPYFilaNaoa.Wrt); 
for Zona 1 to Num_Zonaa do 
with ZonaDIZona] do " 

for Noda := 1 to Numint do 
bagin 

GatIntNoda(Zona,Noda,CurrlNoda); 
with CurrlNod* do 
b*gln 

Writ*ln(OPXFila,CoordCX]:Width:Plaças,' ', 
CootdlY]:Width:Placas,' 
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DFhlX:Hidth:Fl«oai): 1 
Htlt«In(DFYFlIa.CeetdtX}:Hldth:PIaoH.' 2 

Caotdiy]:HldthiFlaaaa,' 3 
DFhty;Hldth:Flaeaa}; 4 

and; 3 
and; 6 

Cloaa(DFXPIla); 7 
Cloaa(DFXFila); 8 

and; ( of HrltagrldSol } g 
10 

ptoeaduxa DumpSolVao; 11 
(- dunpa aelutlen vaotor to outflla } 12 

var DOF : glebaldof; 13 
basin 14 

mltaln(OutFIla) ; IS 
wtltaln(OutFlla,'<•—> Solution vaotor dump 16 
for DOF 1 to DOFCount do 17 

wrltaln(0utFIla.D0F:4,' ',sv£laat<P,OOF, 1):12:4); 18 
writalm(OutFila); 19 

and; 20 
21 

basin 22 
OatOata(Yaar, Month. Day, DayofWaak); 23 
GatllmaCHour, Mln, Sac, SaolOO); 24 

and. { of Unit B7FILE <***************************<< ) 2S 
26 
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Unit B7Solv«t; 1 
{ 2 

3 
Program GNBEM - Unit B7S0LVER 4 

S 
Contains coda for solving systsm oquationa using 6 
virtual arrays. 7 

8 
Copyright (0) 1989, Mark A. Liaba and Iowa Stats 9 
Univsrsity 10 

11 
ALL RIGHTS RESERVED 12 

13 
lERArray and TFVArray units oopywrits (0) 1987 by 14 
TurboFowsr Software. Part of Turbo Profaasional IS 
Prograooar'a Toolbox V4.0. For information, contact: 16 

17 
TurboPowsc Software 18 
3109 Scotts Valley Drive, Suits 122 19 
Scotta Valley, CA 9S068 20 
(408) 438-8808 21 

22 
Laat modified : 10/30/88 11:37 AM 23 

} 24 
2S 

interface 26 
27 

uaea TERArray, 28 
TEVArray, 29 
TPArr; 30 

31 
function SoLver(Sise : word; 32 

var A,B : Pointer; ( aystem matrix/ known vector } 33 
vax Cond_Num : float) : boolean; 34 

(- main routine for system solver. Rstums fslsa if system singular } 35 
36 

( ' ' . I • II I I II } 37 
implementation 38 

39 
uses B7Utils; 40 

41 
type str80 - string[80]; 42 

43 
const ZeroB : byte - 0; 44 

ZeroF : float >0,0; 45 
MaxFloat ; float •• 1.7e308; 46 

47 
var IFVT : Pointer; 48 

49 
{—->SOLVE<——————————— ———-— ——— ——} SO 
{ Routine for the solution of [A] (x) - (fi) system of equations } 51 
{ Rota: all matrices are ZERO based, meaning first index is always 0. ) 52 
{ As such, this routins will look somewhat awkward. Access to all } . 53 
{ matrices is forcsd through function g?float and procedure p?float, } 54 
{ since thssa are dynamic matricss. } 55 
{ A ia a virtual array, while all other vectors are RAM arrays. } 56 
{ Laat modified: August 29, 1988 9:34 AM } 57 
{ ) 58 
procedure SOLVE( Size ; word; ( system size } 58 

var A,B : Pointer); { A matrix/ B vector } 60 
var 61 

I, J, K, KB, KPl, KMl, M : integer; 62 
T : float; 63 

64 
begin 65 

if ( Size <> 1 } then 66 
begin 67 

for K :" 1 to pred(Size) do 68 
begin 69 

KPl :- auco(K); 70 
M :- grword<IPVT,K,l): 71 
T :• gvfloat<B,M,l); 72 
pvfloat(B,M,l,gvfloat(B,K,l)); 73 
pvfloat(B,K,l,T); 74 
for I KPl to Size do pvfloat(B,I,l,gvfloat(B,I,l) + gvfloat(A,I,K) * T); 75 

end; ( K - loop } 76 
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tor KB ;• 1 to pr«d(Slx«) do 1 
begin 2 

KNl SiM - KB; 3 
K #uoo(KMl): 4 
pvfleatCB.K.l, «vflomt(B,K,l) / »vflo«t(A,K,K)); 3 
T -r^loat(B,K,l): 6 
for I :•> 1 to KMl do pvfloat(B,I,l, gvfloat(B,I,l) + svfloat(A,I,K) * I); 7 

and; {KB - loop } 8 
and; { Sise - it } 9 
pvfloat(3,l,l, gvfloat(B,l,l) / sv£loat(A,l,l)); 10 

and; { SOLVE procedure } 11 

12 
{ >DECOHP<— } 13 
{ Deeoaqpoaaa the matrix A and retuma the condition number } 14 
{ Adapted from: } is 
{ Foraythe G. E., M. A. Malcolm and C.E. Molar } 16 
( Computer Methoda for Mathematical Ccmputationa } 17 
{ Prentice-Hall, 1977. } is 
{ Note; To calculate det of A, aiuq^ly multiply the returned die*. } 19 
{ values together and then multiply product +1 if even # or row } 20 
{ Interchanges, and by -1 if odd # of row interchangea. # of int- } 21 
{ erchangea ia returned in laat element of IFVT (i.e. IFVT[Size] } 22 
{ Last modified Auguat 29, 1988 9:34 AM } 23 

24 
25 
26 
27 
28 
29 
30 
31 

procedure SOLVEDR( Sise ; word; 32 
var A,B ; Pointer); 33 

(- special version of SOLVE routine to handle Virtual A mat & RAM B mat } 34 
var 35 

I, J, K, KB, XFl, KMl, M : integer; 36 
T : float; 37 

38 
begin 39 

if ( Sise <> 1 ) then 40 
begin 41 

for K 1 to pred(Slse) do 42 
begin 43 

KPl succ(K); 44 
M :« grword(IPVT,K,l); 45 
T grfloat(B,M,l); 46 
prfloat(B,M, l,grfloat(B,K,1}}; 47 
prfloat(B,K,l,T); 48 
for I KPl to Sise do prfloat(B,I,l,grfloat(B,I,l) + 8vfloat(A,I,K} * I); 49 

end; { K - loop } 50 
for KB 1 to pred(Size) do 51 
begin 52 

KMl Size - KB; 53 
K aucc(KMl); 54 
prfloat(B,K,l, grfloat(B,K,l) / 8vfloat(A,K,K)); 55 
T -8t£Loat<B,K,l); 56 
for I !- 1 to KMl do prfloat(B,I,l, grfloat(B,I,l) + gvfloat(A,I,K) * I); 57 

end; {KB - loop } 58 
end; { Sise - if } 59 
prfloat(B,l,l, grfloat(B,l,l) / gvfloat(A,l,l)}; 60 

and; { SOLVE procedure } 61 
62 

begin 63 
{ make the Work vector ) 64 
TFRArray.MakeA(Hork, Size, 1, sizeof(Float)); 65 
TERArray.ClearA(Hork,ZeroB,IFRArray.Fastlnit); 66 
CONDITION ;• MaxFloat; { Set init value of condition - reset later } 67 
prworddPVT,Size, 1,1); { Ihia ia used to in determinant calculation } 68 
if (Sise <> 1) than 69 
begin 70 

Anorm 0.0; 71 
for J 1 to Size do 72 
begin 73 

T 0.0; 74 
for I 1 to Size do T T + abs(gvfloat(A,I,J)); 75 
if T > Anorm than Anorm :• T; 76 

procedure OECGMP (Sise : word; 
var A : Pointer; 
var Condition : float); 

var I, K, J. M, KPl. KMl, KB : word; 
T, Anorm, Ynorm, Znorm, EK : float; 
Work : Pointer; ( dynamic RAM array — Turbo Profeaaional v4.0} 
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•nd; 1 
tor K ;• 1 to pr«d(Sisa) do 2 
bailn .3 

XPl :<• tueoCK); 4 
M K! S 
for I KPl to Si## do g 
if •b#(gvfIo#t(A,I,K)) > •b#(gvflo#t(A,M,K)) thra M I; 7 

pnford(IPVT,X,l,H); B 
9 

{ IFVKSlta) contain# tha # of row intarchanga# dona. } 10 
if < M o K ) than pnferd<IFVT,SlB«,l,#uco(gtword(IFVT,Sita,l))); 11 
T gvfloat(A,M,K); 12 
pv£loat(A.H,K, gvfloat(A,K,K}); 13 
pvfLoat(A,K,K.T)i 14 
if (T <> 0.0) than IS 
bagin 16 

for I :• XPl to Sisa do pvfloat(A,I,K, -gvfloat(A,I,K)/T); 17 
for J KPl to Sis* do IS 
bagin 18 

T gvfloat(A,M,J); 20 
pvflo#t(A,M,J,gvfloat(A,K,J))i 21 
pvfloat(A,K,J,I); 22 
if (T <> 0.0) thra 23 
for I XFl to Sisa do pvfloat(A,I,J,gvfloat(A,I,J) + gv£loat(A,X,K) * I); 24 

rad; { J Loop } 23 
md; { T - if } 26 

rad; ( X loop ) 27 
for K 1 to Sisa do 28 
bagin 28 
I .— 0.0; 30 
if ( X <> 1 ) than 31 
bagin 32 

XMl pr*d(X); 33 
for I 1 to KMl do T T + gvfloat(A,I,K) * grfloat(Work,i,1); 34 

and; { X - if > 35 
EX Î- 1.0; 36 
if ( T < 0.0 ) than EX -1.0; 37 
if ( gvfloat(A,X,X) - 0.0) than 38 
bagin 38 

IPRArray.0iapaaaA(W6rk); 40 
axit; { to main block } 41 

and; 42 
prfloat(WOBX,X,l, -(EX + T)/gvfloat(A,X,X)); 43 

and; { X - loop } 44 
for KB 1 to prad(Siza) do 45 
bagin 46 

X :• Sisa - KB; 47 
T 0.0; 48 
XPl *uco(X); 48 
for I XPl to Sis* do T I + gvfIoat(A,I,K) * grfIoat(Hork,k,l); 50 
prfloat(HORX,X,l,I); 51 
M gn«ord(IPVT,K,l); 52 
if (M <> X) than 53 
bagin 54 
I grfloat(WORK,M,1); 55 
prfloat(VK>RK,M,l,grfloat(WORX,X,l)); 56 
prfloat(HOHK,X,l,T): 57 

rad; { M - if > 58 
and; {KB - loop } 58 
YNORM 0.0; 60 
for I 1 to Sisa do ïnorm Ynorm + abs<grfloat(WORK,I,l)); 61 
SOLVEDR(Siza, A, WORK); 62 
Znorm 0.0; 63 
for I :* 1 to Sis* do Znorm Znorm + abs(grfloat(WORK,I,l)}; 64 
CONDITION :• Anorm * Znorm / Ynorm; 65 
if (CONDITION < 1.0 ) th*n CONDITION 1.0; 66 

rad { Sis* - if ) 67 
Isa if gvfloat(A,l,l) <> 0.0 than CONDITION 1.0; 66 

TPRArray.DiaposaA(Work); 68 
and; { DECGMP proeadura } 70 

71 
72 

function Solvar(Slza : word; 73 
var A,8 ; Pointer; { system matrix/ known vector } 74 
var Cond_Nuffl : float) : boolean; 75 

{- main routine for system solver. Returns falae if system singular } 76 
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basin 1 
Solvar Falaa; 2 
TFIIAtr«y.MakaA(IFVT,8lM,l, #i%aof(wo:d)); ( uaa RAM array ior pivot vaotor } 3 
IFRAcragr.ClaarAdPVT, ZatoB, TPRArray.Paatlnlt) ; * 
StartTimarCDaeoopoilni ayatan BMtrlx'); 5 
Daoomp(8ige, A, Cond.Ntaa); 6 
StepTioMtCdaoaapoaa ayatam mtclx'): 7 
If (Candjtum + 1,0) • Cendjlun than axlt; { aingular ayatam w/ln praolalon of machina } 8 
StartTlOMrCSolvlns ayatam aquatlona' ); g 
Solva(SlM,A,B)i 10 
StopXloarCaelva ayataai of aquatlona' ); 11 
TFRArray.DlapoaaA(IFVT): 12 
Solvar !- True; 13 

End; { procadura aolva } 14 

and. { of Unit B7Solvar <••*•••••••**••*••••••••**••« } Ig 
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Unit B7Etroti 1 

2 
{ 3 

4 
Program OHBEM - Unit B7Error S 

6 
Contain# error trapping code for OHBEM. 7 

8 
Copyright (c) 1089, Mark A. Liabe and Iowa State 9 
Univeraity 10 

11 
ALL RZmrS RESERVED 12 

13 
14 

Laat modified : 10/30/88 IS 
) 16 

17 
interface 18 

19 
Usea B7DEF: 20 

21 
type lOErraet " aet of byte; 22 

ErrorStr • atrlngC40]; 23 
24 

procedure ShowError(ErrorMea : ErrorStr; Stop : boolean); 2S 
{- puta up error window and atop# program if atop true } 26 

27 
function IO_Bad(IORe# ; word; OKSet : lOErrSet) : boolean; 28 

{- ehaoka lOReault, if in OK error aet then retuma falae, elae diaplays } 29 
{ meaaage and retuma true } 30 

31 
procedure ErrorMam; 32 

{* laat ditch bail out } 33 
34 

{SF+} 36 
implementation 37 

38 
uaea TPString, 39 

TFCrt, 40 
TPWindow, 41 
TFVArray; 42 

43 
const ErrorAttr : byte • $4E; 44 

Eaoape " #27; 45 
46 

var 47 
CH : Char; 48 
ErAttr : byte; 49 
aavedExitProc : Pointer; { old exitProc Pointer } SO 

51 
procedure ErrorMam; 52 
begin 53 

Windowd, 1,80,25); 54 
NormVideo; 55 
Clracr; 56 
Writeln('Insufficient Mamory'); 57 
Halt(l); 58 

end; 59 
60 

function ErrorText(ErrorNua ; word) ; errorStr; 61 
{- return# error mesaage aaaociated with error messages) 62 

begin 63 
case ErrorNum of 64 

2; ErrorTezt :• 'File not found'; 65 
3: ErrorText 'Path not found'; 66 
4: ErrorText 'Too many open files'; 67 
3: ErrorText :• 'File acoeaa denied'; 68 
0: ErrorText :• 'Invalid file handle'; 69 

12; ErrorText 'Invalid file acceas code'; 70 
IS; ErrorText 'Invalid drive number'; 71 
16: ErrorText 'Cannot remove current directory'; 72 
17: ErrorText 'Cannot rename across drives'; 73 

100: ErrorText 'Disk read error'; 74 
101: ErrorText :• 'Disk write error'; 75 
102: ErrorText :- 'File not aasigned'; 76 
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103: ErrotTaxt 'Fil# nob opm'; 1 
104: Ectotlaxt :• 'Fil# nob op«n for Inpub'; 2 
103: Krrotlaxb :• 'Fil* nob open for oubpub'; 3 
108: BrrorTaxb 'Invalid numeric fomab'; ^ 
ISO: Esrorlexb :- 'Diak la wriba-ptobacbad'; 3 
131: Errotlaxb :- 'Unknown unib'; 6 
132: Errotlaxb 'Drive nob ready'; 7 
133: ErrerXasb :" 'Unknown ceanand'; 8 
134: ErrerTaxb :- 'CRC error in daba'; 9 
133: ErrorTaxb :- 'Bad drive requaab abruobura langbh'; 10 
136: ErrorTexb :- 'Disk aaak error'; 11 
137: ErrorTexb 'Unknown OMdia bype'; 12 
138: ErrorTexb :- 'Sector nob found'; 13 
139: ErrorTexb :- 'Frinber oub of paper'; 14 
100: ErrorTexb 'Daviea write fault'; IS 
181: ErrorText :- 'Device read fault'; 16 
182: ErrorText 'Hardware failure'; 17 
200: ErrorText 'Diviaion by aero'; 16 
201: ErrorText 'Range check error'; 19 
202: ErrorText 'Stack overflow error'; 20 
203: ErrorText :• 'Heap overflow error'; 21 
204: ErrorText :" 'Invalid pointer operation'; 22 
203: ErrorText :- 'Floating point overflow'; 23 
208: ErrorText :• 'Floating point underflow'; 24 
207: ErrorText :" 'Invalid floating point operation'; 23 
alee 26 
ErrorText 'Unknown Error # '+ Long2Sbr(ExibCode) 27 

end; 28 
and; { func ErrorTexb } 29 

30 
procedure HribeIOError( lORea : word); 31 

(- puts up error window and writes 10 error neaaaga ) 32 
var 33 

lOTexb : ErrorSbr; 34 
lOHindow : HindowFtr; 33 

begin 36 
loText :" ErrorTaxbUORas) ; 37 
FramaChara :- 38 
if not HakaWindowCIOHindow,19,14,61,21,True,True,Falaa,ErAtbr,ErAbtr,ErAttr, ") 39 

bhan ErroxMam; 40 
if Nob DiapleyWindow(lOWindow) THEN ErrorMwn; 41 
FaabWribeWindow(Cenber('— 10 ERROR ~',40),l,l,ErAbbr); 42 
FaabWribaWindow(Cenber(IOTexb,40),3,1,ErAttr); 43 
FastHrlteWindow(Cenber<'Frets ESCAPE',40),S,l,ErAttr); 44 
repeat until Readkey • Eacapa; 45 
lOHindow :- EraseTopMindow; 46 
DisposeWindow(IOWindow); 47 

and; { of WritalOError } 48 
49 

function IO_Bad(IORes : word; OKSeb : lOErrSeb) : boolean; SO 
{- checks lOResulb, if in OK error sab bhan rebuma falae, else displays } 51 
{ message and rebuma brue } 52 

begin S3 
10 Bad :" True; 54 
OKSeb OKSeb + [0]; 55 
if bybe(IORes) in OKSeb than 56 
begin 57 

IO_Bad :" False; 58 
Exib 59 

end 60 
else WritelOError(IoRas); 61 

and; { of 10 Bad } 62 
63 

procedure Cleanup; 64 
{- fraea arraya, oloaas filea, etc } 65 

begin 66 
if H <> nil than DisposeA(H,True); 67 
if F <> nil than DisposeA(F,Irue); 68 
{SI-) 69 
Close(InFile); 70 
Close(OutFile); 71 
{SI+) 72 

end; { proc Cleanup ) 73 
74 

procedure ShowError(ErrorMes : ErrorStr; Stop : boolean); 75 
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{- puts up Mtor window and atop* program If atop trua } 
vae EtroiMaaHindow : HindowFtr; 

i_ J I 
FramaChara :• Tn"™!'! 
if not MakaWlndow(ErrotMaaHindow,10,14,Bl,21,Trua,Trua,Falaa,BrAttr,ErAttr,ErAttr, ' ' ) 

than ErrorMM; 
if Not DiaplayWindowCErrotMaaWindoM) THEN ErrorMan; 
FastVlcitaHindow(Cant*r(ErcoxHaa ,40),3,1,ErAttr) ; 
FaatHritaHlndew(Cantar('Praaa ESCAPE',40),3,1,ErAttr); 
rapaat until Aaadkay • Eaoapa; 
DiBposaMlndow(EceotMaaHlndow) ; 
NormalCuraor; 
if Step than 
basin 

Claantlp; 
Halt; 

and; 
and; { proo ShowError } 

PROCEDURE ExitSolvar; 
{- ouatom arror handler } 

var ExitTaxt : ErrorStr; 
ErrorWindow : HindowFtr; 

bagin 
IF ErrorAddr <> Nil THEN 
bagin 

CxitTaxt Errorlaxt(bitCoda) ; 

FramaChara :• I 
if not MakaHlndow(ErrorHlndow,10,14,61,21,Trua,Trua,Falsa,ErAttr,ErAttr,ErAttr,'') 

than ErrorMtm; 
if Not DiiplayHindow(ErrorWindow) THEN ErrorMam; 
FaatWritaWindowCCantar(ExitTaxt,40),3,1,ErAttr); 
FaatWritaWindow(Cantar('Praaa ESCAPE',40),5,1,ErAttr); 
rapaat until Raadkay " Eaoapa; 
DiapoaaWindow(ErrorWindow) ; 
HotmalCuraor; 
ErrorAddr ;• Nil; 

and; 
Cleanup; 
ExitProo SavadExitProe; 
halt; 

and; 

bagin 
aavadExitProo axitProo; { install currant exit proc for this unit } 
ExitProo lExitSolver; 
MapColors Trua; 
ErAttr :• MapColor(ErrorAttr); 

and. {of Unit B7Error <******»********************« } 
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Unit IPArtî 1 
2 

{ 3 
4 

Ftoiram GHBEH - Unit IFARR S 
6 

Contains ooda tor aooaaain* virtual attaya. Uaad thia 7 
taohniqua in oaaa data attuotura ohangad ao aa to avoid 8 
axtanaiva ehansaa to solution coda. 9 

10 
Copyright (c) 1980, Mark A. Liaba and Iowa Stata 11 
Univsraity 12 

13 
ALL RIGHTS RESERVED 14 

IS 
TERAtray and TPVAtray unita oopywrita (o) 1987 by 16 
TucboFowar Software. Part of Turbo Profaaatonal 17 
Programmer'a Toolbox V4.0. For information, contact; 18 \ 

19 
TurboFowar Software 20 
3100 Seotta Vallay Driva, Suite 122 21 
Seotta Vallay, CA 03088 22 
(408) 438-8808 23 

24 
Last modified : 0/21/88 1:29 FM 2S 

J 26 
27 

interface 28 
29 

uaea TFRArray, 30 
IFVarray; 31 

32 
type float - double; 33 

34 
procedure Frinteger(var Arr ; Fointer; Row, Col ; integer; val : integer); 3S 

{- puta integer value in RAM array } 36 
37 

function 6rintager(var Arr : Pointer; Row, Col : integer) ; integer; 38 
{- geta integer value from RAM array } 39 

40 
procedure Frword(var Arr : Pointer; Row, Col : word; val : word); 41 

(- puta word value in RAM array } 42 
43 

function Orword(var Arr : Pointer; Row, Col : word) : word; 44 
{- geta word value from RAM array } 4S 

46 
procedure Prfloat(var Arr : Pointer; Row, Col : word; val : float); 47 

{- puta float value in RAM array } 48 
49 

function Grfloat(var Arr : Fointer; Row, Col : word) : float; SO 
{- geta float value frcm RAM array } 51 

52 
procedure Fvword(var Arr : Fointer; Row, Col ; word; val ; word); S3 

{- puts word value in VIRTUAL array } 54 
55 

function GvwordCvar Arr : Pointer; Row, Col ; word) : word; 56 
(- geta word value from VIRTUAL array } 57 

58 
procedure Pvfloat(var Arr : Pointer; Row, Col : word; val : float); 59 

{- puts float value in VIRTUAL array } 60 
61 

function GvfloatCvar Arr : Pointer; Row, Col ; word) : float; 62 
{- gets float value from VIRTUAL array } 63 

64 

implementation 66 
67 

procedure Frinteger(var Arr : Pointer; Row, Col ; integer; val : integer); 68 
(- puts Integer value in RAM array } 69 

begin 70 
TFRArray.SetA(Arr, pred(Row), pred(Col), val); 71 

end; 72 
73 

function Grlnteger(var Arr : Pointer; Row, Col : Integer) : integer; 74 
{- gets integer value from RAM array } 75 

var Temp : integer; 76 
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b#*in 1 
TFRAxrar.R«tA(Atx, pt*d(Row), pt«d(Col), lamp); Grlntagar Tamp; 2 

and; 3 

4 
ptooaduxa Fnfotd(var Art ; Folnbat; Row, Col : word; val : word); S 

{- puts word valua In RAM array ) 6 
baaln 7 

TERArray.SatA(Arr, prad(Row), prad(Col), val); 8 
and; 0 

10 
function Orword(var Arr : Folntar; Row, Col : word) : word; 11 

(- gats word valua from RAM array ) 12 
var Taov ; word; 13 
basin 14 

TIltArray.RatA(Arr, prad(Row), prad(Col), Tamp); Orword Tamp; IS 
and; 16 

17 
procadura Frfloat(var Arr : Folntar; Row, Col : word; val : float); 18 

(- puta float value In RAM array } 19 
basin 20 

TPRArray.SatA(Arr, prad(Row), prad(Col), val); 21 
and; 22 

23 
function 6rfloat(var Arr ; Fointar; Row, Col : word) : float; 24 

{- gata float valua from RAM array } 25 
var Tamp : float; 26 
basin 27 

TFRArray.RatA(Arr, prad(Row), prad(Col), Tamp); Grfloat Tamp; 28 
and; 29 

30 
prooadura Pvword(var Arr : Folntar; Row, Col ; word; val ; word); 31 

{- puts word valua in VIRTUAL array } 32 
bagin 33 

TFVArray.SatA(Arr, prad(Row), prad(Col), val); 34 
and; 35 

36 
function Gvword(var Arr : Pointer; Row, Col : word) : word; .37 

{- gata word value from VIRTUAL array } 38 
var Tamp ; word; 39 
bagin 40 

TFVArray.RetA(Arr, pred(Row), pred(Col), Tamp); Gvword Tamp; 41 
end; 42 

43 
procedure Fvfloattvar Arr : Folntar; Row, Col ; word; val : float); 44 

{- puts float value in VIRTUAL array } 45 
begin 46 

TFVArray.SatA(Arr, pred(Row), pred(Col), val); 47 
end; 48 

49 
function Ovfloat(var Arr : Folntar; Row, Col : word) : float; SO 

{- gate float value from VIRTUAL array } 51 
var Tanqp : float; 32 
begin 53 

TFVArray.RetA(Arr, pred(Row), pred(Col), Temp); Gvfloat Temp; 54 
end; 55 

56 
end. { of Unit TFArr <********************#******<< } 57 
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APPENDIX B: SAMPLE INPUT AND MAIN OUTPUT FILES FOR MODEL GWBEM 
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US83 problM C2;oa* «on» ( K<*2);on» *#11 • o#nt#r;no pot#nblal at boundary 

1 0 .00 0 .00 ; Global node definition 
2 0 00 2 00 
3 0 00 4 00 
4 0 00 6 00 
3 0 00 a 00 
6 2 00 8 00 
7 4 00 8 00 
8 6.00 8 00 
9 S 00 8 00 
10 10 00 8 00 
11 12 00 8 00 
12 14.00 8 00 
13 16.00 8 00 
14 18 00 8 00 
13 20.00 8 00 
10 20 00 6 00 
17 20.00 4 00 
18 20 00 2 00 
19 20 00 0 00 
20 18.00 0 00 
21 16 00 0 00 
22 14 00 0. 00 
23 12 00 0 00 
24 10 00 0. 00 
23 8 00 0. 00 
26 6 00 0. 00 
27 4 00 0. 00 
28 2.00 0. 00 
28 ; Nunbar of 

1 i 1 

1 1 0 0. 00 2 0 0.0 
2 2 0 0. 00 3 0 0.0 
3 3 0 0.00 4 0 0.0 
4 4 0 0.00 5 0 0.0 
3 5 1 0.0 6 1 0.0 
6 6 1 0.00 7 1 0.0 
7 7 1 0.00 8 1 0.00 
8 8 1 0.00 9 1 0.00 
0 9 1 0.00 10 1 0.00 

10 10 1 0.00 11 1 0.00 
11 11 1 0.00 12 1 0.00 
12 12 1 0.00 13 1 0.00 
13 13 1 0.00 14 1 0.00 
14 14 1 0.00 15 1 0.00 
15 15 0 0.00 16 0 0.00 
16 16 0 0.00 17 0 0.00 
17 17 0 0.00 18 0 0.00 
18 18 0 0.00 19 0 0.00 
19 19 1 0.00 20 1 0.00 
20 20 1 0.00 21 1 0.00 
21 21 1 0.00 22 1 0.00 
22 22 1 0.00 23 1 0.00 
23 23 1 0.00 24 1 0.00 
24 24 1 0.00 23 1 0.00 
23 23 1 0.00 26 1 0.00 
26 26 1 0.00 27 1 0.00 
27 27 1 0.00 28 1 0.00 
28 28 1 0.00 1 1 0.00 

28 1 
Numb#r 

60 2.0 2.0 
1 
8 
17 
18 
19 
20 
21 
22 
23 
24 
23 
26 
27 
28 

1 10.0 4.0 0.05 
1.50 
1.50 

ot zonaa 
0.0 ; Num»l#ma, numwalls, numlnt 
2 
10 

3 
11 

4 
12 

S 
13 

rlor, Kx, Ky, ThataX 
7 8 

4 15 16 

0 100.0 ; Wall numb#r, x-ooor, y-coor, radius, typa, known val 
1,50 ; Interior noda definitions 
2.50 
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USOS ptoblam C2;on« ion* ( K"2);on# wall # aant8r;no potanblal at boundaty 

Run data; 3/03/1989 Run blma: 10:01 

***> Global Roda Infotmatlon <*** 
Nunbar Global Hodaa : 28 

—> Global Nod# DaZlnlbion <—-

II
 

X-Coor Y-Coot 

1 O.OOOE+0000 O.OOOE-fOOOO 
2 O.OOOZ+0000 2.000E+0000 
3 O.OOOE+0000 4.000E+0000 
4 O.OOOE+0000 6.000E+0000 
S O.OOOZ+0000 8.000E+0000 
6 2.000E+0000 8.000E+0000 
7 4.000E+0000 8.000E+0000 
8 6.000E+0000 8.000E+0000 
9 8.000E+0000 8.000E+0000 

10 l.OOOE+0001 8.000E+0000 
11 1.200E+0001 8.000E+0000 
12 1.400E+0001 8.000E+0000 
13 1.600E+0001 8.000E+0000 
14 1.800E+0001 8.000E+0000 
IS 2.000E+0001 8.000E+0000 
16 2.000E+0001 6.000E+0000 
17 2.000E+0001 4.000E+0000 
18 2.000E+0001 2.000E+0000 
10 2.000E+0001 O.OOOE+0000 
20 1.800E+0001 O.OOOE+0000 
21 1.600E+0001 O.OOOE+0000 
22 1.400E+0001 O.OOOE+0000 
23 1.200E+0001 O.OOOE+OOOQ 
24 l.OOOE+0001 O.OOOE+0000 
25 8.000E+0000 O.OOOE+0000 
26 O.OOOE+0000 O.OOOE+0000 
27 4.000E+0000 O.OOOE+0000 
28 2.000E+0000 O.OOOE+0000 

***> Global Elaaant Infonnatton <*** 

Number Global El#m#ntm ; 28 

——> Global Elamant Definition < 

First noda Saoond noda 
El#m Mod# Xyp# Known Valu# Nod# Typ# Known Valu# 

1 1 Phi O.OOOE+0000 2 Phi O.OOOE+OOOO 
2 2 Phi O.OOOE+0000 3 Phi O.OOOE+OOOO 
3 3 Phi O.OOOE+0000 4 Phi O.OOOE+OOOO 
4 4 Phi O.OOOE+0000 5 Phi O.OOOE+OOOO 
S 5 DPhi O.OOOE+0000 6 DPhi O.OOOE+OOOO 
6 6 DPhi O.OOOE+0000 7 DPhi O.OOOE+OOOO 
7 7 DPhi O.OOOE+0000 8 DPhi O.OOOE+OOOO 
8 8 DPhi O.OOOE+0000 9 DPhi O.OOOE+OOOO 
9 9 DPhi O.OOOE+0000 10 DPhi O.OOOE+OOOO 

10 10 DPhi O.OOOE+0000 11 DPhi O.OOOE+OOOO 
11 11 DPhi O.OOOE+0000 12 DPhi O.OOOE+OOOO 
12 12 DPhi O.OOOE+0000 13 DPhi O.OOOE+OOOO 
13 13 DPhi O.OOOE+0000 14 DPhi O.OOOE+OOOO 
14 14 DPhi O.OOOEtOOOO IS DPhi O.OOOE+OOOO 
IS IS Phi O.OOOE+OOOO 16 Phi O.OOOE+OOOO 
16 16 Phi O.OOOE+OOOO 17 Phi O.OOOE+OOOO 
17 17 Phi O.OOOE+OOOO 18 Phi O.OOOE+OOOO 
18 18 Phi O.OOOE+0000 19 Phi O.OOOE+OOOO 
19 19 DPhi O.OOOE+OOOO 20 DPhi O.OOOE+OOOO 
20 20 DPhi O.OOOE+OOOO 21 DPhi O.OOOE+OOOO 
21 21 DPhi O.OOOE+OOOO 22 DPhi O.OOOE+OOOO 
22 22 DPhi O.OOOE+OOOO 23 DPhi O.OOOE+OOOO 
23 23 DPhi O.OOOE+OOOO 24 DPhi O.OOOE+OOOO 
24 24 DPhi O.OOOE+OOOO 25 DPhi O.OOOE+OOOO 
25 25 DPhi O.OOOE+OOOO 26 DPhi O.OOOE+OOOO 
26 26 DPhi O.OOOE+OOOO 27 DPhi O.OOOE+OOOO 
27 27 DPhi O.OOOE+OOOO 28 DPhi O.OOOE+OOOO 
28 28 DPhi O.OOOE+OOOO 1 DPhi O.OOOE+OOOO 
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•**> Zona Information <*** 

Nunbar Zona#: 1 

—> Zona 1 data <— 
Number Boundary Elaaianta: 28 
Runbar Walla: 1 
Runbar Intarlor Pointa: 80 
Kx: 2.000E+0000 
Ky: 2.Q00E+0G00 
Ihata-x: O.OOOE+0000 

Global alamant liât — Zona 1 

Local Global 

1 1 
2 2 
3 3 
4 4 
S S 
6 8 
7 7 
8 8 
9 0 

10 10 
11 11 
12 12 
13 13 
14 14 
IS IS 
18 18 
17 17 
18 18 
19 18 
20 20 
21 21 
22 22 
23 23 
24 24 
25 2S 
26 28 
27 27 
28 28 

Wall dafinition — Zona 1 

Spac. Valua 

l.OOOE+0002 

Noda X Coor Y Coor Radiua Typa 

1 l.OOOE+0001 4.000E+0000 S.OOOE-0002 Flow 

Intarior noda dafinition — Zona 1 

Noda X Coor y Coor 

2 l.SOOE+0000 l.SOOE+0000 
3 l.SOOE+0000 2.300E+0000 
4 1.300E+0000 3.S0OE+OOOO 
S l.SOOE+0000 4.300E+0000 
8 l.SOOE+0000 3.300E+0000 
7 l.SOOE+0000 8.S00E+0000 
8 3.500E+0000 l.SOOE+OOOO 
9 3.300E+0000 2.300E+0000 

10 3.500E+0000 3.500E+0000 
11 3.S00E+0000 4.500E+0000 
12 3.300E+0000 5.SOOE+0000 
13 3.300E+0000 6.300E+0000 
14 3.300E+0000 l.SOOE+OOOO 
IS 5.500E+0000 2.SOOE+0000 
18 5.S00E+0000 3.300E+0000 
17 5.300E+0000 4.SOOE+0000 
18 3.S00E+0000 S.SOOE+OOOO 
19 3.300E+0000 6.SOOE+0000 
20 7.300E+0000 l.SOOE+OOOO 
21 7.300E+0000 2.SOOE+0000 
22 7.300E+0000 3.SOOE+0000 
23 7.300E+0000 4.SOOE+0000 
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24 7.300E+0000 3.300E+0000 
23 7.300E+0000 8.300E+0000 
26 9.300B+0000 1.300E+0000 
27 9.300E+0000 2.300E+0000 
28 9.300Z+0000 3.300E+0000 
29 9.300E+0000 4.300E+0000 
30 9.300E+0000 3.300E+0000 
31 9.300E+0000 6.300E+0000 
32 1.130E+0001 1.300E+0000 
33 1.130E+0001 2.300E+0000 
34 1.130E+0001 3.300E+0000 
33 1.130E+0001 4.300E+0000 
36 1.130E+0001 3.300E+0000 
37 1.150E+0001 S.SOOE-fOOOO 
38 1.330E+0001 1.300E+0000 
39 1.330E+0001 2.300E+0000 
40 1.330E+0001 3.500E+0000 
41 1.330E+0001 4.300E+0000 
42 1.330E+0001 3.300E+0000 
43 1.330E+0001 8.300E+0000 
44 1.330E+0001 1.300E+0000 
43 1.330E+0001 2.300E+0000 
48 1.330E+0001 3.300E+0000 
47 1.550E+0001 4.300E+0000 
48 1.330E+0001 3.300E+0000 
49 1.330E+0001 6.300E+0000 
30 1.730E+0001 1.300E+0000 
31 1.730E+0001 2.300E+0000 
32 1.730E+0001 3.300E+0000 
33 1.730E+0001 4.300E+0000 
34 1.730E+0001 3.500E+0000 
33 1.730E+0001 6.300E+0000 
38 1.930E+0001 1.300E+0000 
37 1.930E+0001 2.300E+0000 
38 1.930E+0001 3.300E+0000 
39 1.930E+0001 4.300E+0000 
80 1.9S0E+0001 3.300E+0000 
81 1.950É+0001 8.300E+0000 

0.8800 aaconda to get data from input flla<' 

0.3300 ••oonds to prepmr* syatM for int#gr#tion<"— 

7.5200 ••condi to integrate boundary equationa<» 

7.6900 seconda to decompose system matri%<— 

"> 0.8200 seconds to solve system of equations<'— 

*•*»> CONDITION NUMBER : 7.81877284212825E+0001 

Solution vector dump 
1 6.3032 
2 6,2388 
3 8.2362 
4 6.2388 
3 8.3032 
6 -8.2390 
7 -12.4241 
8 -18.3979 
9 -23.4727 

10 -23.7063 
11 -23.4727 
12 -18.3979 
13 -12.4241 
14 -6.2390 
13 6.3032 
16 6.2388 
17 6.2362 
18 6.2388 
19 6.3032 
20 -8.2390 
21 -12.4241 
22 -18.3979 
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23 -23.4727 
24 -25.7063 
25 -23.4727 
26 -16.3079 
27 -12.4241 
28 -6.2390 
29 -56.8914 

»> Boundary valu** 

Zona : 1 

Zona Elm 
Global El 
Elm, Nod* 
X-ooot 
Y-eoor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 
Elm. Rod* 
X-eoor 
y-ooor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 
Elm. Noda ' 
X-ooox 
Y-eoor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 
Elm. Noda • 
X-eoor 
Y-eoor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 
Elm. Noda -
X-eoor 
Y-eoor 
N Flux in 
N Flow in 
Potential 

Zona Elm 
Global El 
Elm. Noda -
X-eoor 
Y-eoor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 
Elm. Noda -
X-eoor 
Y-eoor 
N Flux in 
N Flow in 
Potantial 

Zona Elm 
Global El 

1 
1 

—A 
0.0000 
0.0000 

-3.1318 
6.3032 
0.0000 

4 
4 

—A 
0.0000 
6.0000 

-3.1104 
6.2388 
0.0000 

7 
7 

—A 
4.0000 
8.0000 

-0.0000 
0.0000 

-12.4241 

10 
10 

—A 
10.0000 
8.0000 

-0.0000 
0.0000 

-25.7063 

13 
13 

—A 
16.0000 
8.0000 

-0.0000 
0.0000 

-12.4241 

16 
16 

—A 
20.0000 
6.0000 

-3.1194 
6.2388 
0.0000 

19 
19 

"A 
20.0000 

0.0000 
-0.0000 
0.0000 
0.0000 

22 
22 

—B 
0.0000 
2.0000 

-3.1194 
6.2388 
0.0000 

—B 
0.0000 
8.0000 

-3.1516 
6.3032 
0.0000 

"B 
6.0000 
8.0000 

-0.0000 
0.0000 

-18.3979 

B 
12.0000 
8.0000 

-0.0000 
0.0000 

-23.4727 

—B 
18.0000 

8.0000 
-0.0000 
0.0000 

-6.2390 

"B 
20.0000 
4.0000 

-3.1281 
6.2562 
0.0000 

—B 
18.0000 

0.0000 
-0.0000 
0.0000 

-6.2390 

.—A 
0.0000 
2.0000 

-3.1194 
6.2388 
0.0000 

5 
5 

—A 
0.0000 
8.0000 

-0.0000 
0.0000 
0.0000 

8 
8 

—A 
6.0000 
8.0000 

-0.0000 
0.0000 

-18.3979 

11 
11 

—A 
12.0000 
8.0000 

-0.0000 
0.0000 

-23.4727 

14 
14 

—A 
18.0000 
8.0000 

-0.0000 
0.0000 

-6.2390 

17 
17 

—A 
20.0000 

4.0000 
-3.1281 
6.2562 
0.0000 

20 
20 

—A 
18.0000 
0.0000 

-0.0000 
0.0000 

-6.2390 

23 
23 

B 
0.0000 
4.0000 

-3.1281 
6.2562 
0.0000 

—B 
2.0000 
8.0000 

-0.0000 
0.0000 

-6.2390 

—B 
8.0000 
8.0000 

-0.0000 
0.0000 

-23.4727 

—B 
14.0000 

8.0000 
-0.0000 
0.0000 

-18.3979 

—B 
20.0000 

8.0000 
-0.0000 
0.0000 
0.0000 

—B 
20.0000 
2.0000 

-3.1194 
6.2388 
0.0000 

—B 
16.0000 
0.0000 

-0.0000 
0.0000 

-12.4241 

3 
3 

• A 
0.0000 
4.0000 

-3.1281 
6.2562 
0.0000 

6 
6 

—A 
2.0000 
8.0000 

-0.0000 
0.0000 

-6.2390 

9 
9 

—A 
8.0000 
8.0000 

-0.0000 
0.0000 

-23.4727 

12 
12 

A 
14.0000 
8.0000 

-0.0000 
0.0000 

-18.3979 

15 
15 

—A 
20.0000 
8.0000 

-3.1516 
6.3032 
0.0000 

18 
18 

—A 
20.0000 
2.0000 

-3.1194 
6.2388 
0.0000 

21 
21 

—A 
16.0000 
0.0000 

-0.0000 
0.0000 

-12.4241 

24 
24 

B 
0.0000 
6.0000 

-3.1194 
6.2388 
0.0000 

—B 
4.0000 
8.0000 

-0.0000 
0.0000 

-12.4241 

B 
10.0000 

8.0000 
-0.0000 
0.0000 

-25.7063 

"B 
16.0000 

8.0000 
-0.0000 
0.0000 

-12.4241 

—B 
20.0000 

6.0000 
-3.1194 
6.2388 
0.0000 

—B 
20.0000 

0.0000 
-3.1516 
6.3032 
0.0000 

—B 
14.0000 

0.0000 
-0.0000 
0.0000 

-18.3978 
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Elan. Roda -
X-ooor 14 .0000 12.0000 12 .0000 10 .0000 10 .0000 8.0000 
Y-ooor 0 .0000 0.0000 0. 0000 0 .0000 0, ,0000 O.OOOO 
M Flux in -0 .0000 -0.0000 -0 .0000 -0 .0000 -0, .0000 -0.0000 
R Flow in 0 .0000 0.0000 0, 0000 0 .0000 0, ,0000 O.OOOO 
Potential -18, ,3878 -23.4727 -23. 4727 -25, .7083 -25, ,7083 -23.4727 

Zona Elen 29 28 27 
Global El 25 28 27 

WOQ# 
x-ooor 8 0000 6.0000 8. 0000 4. 0000 4, 0000 2.0000 
Y-ooor 0. 0000 0.0000 0. 0000 0. 0000 0. 0000 0.0000 
R Flux in -0. 0000 -0.0000 -0. 0000 -0. 0000 -0. 0000 -0.0000 
R Flow in 0, 0000 0.0000 0. 0000 0. 0000 0. 0000 0.0000 
Potential -23. 4727 -18.3878 -18. 3878 -12. 4241 -12.4241 -8.2380 

Zona Elen 28 
Global El 28 
Elem. Roda - A- —B 
X-ooor 2. 0000 0.0000 
Y-ooot 0. 0000 0.0000 
R Flux in -0. 0000 -0.0000 
R Flow in 0. 0000 0.0000 
Potential -6. 2380 0.0000 

»> Soutoa/«lnk valuaa 

Zona : 1 
Wall 1 
X-ooor 10.0000 
y-ooot 4.0000 
Fotantial -30.8814 
Flow (In-) 100.0000 

> 31.4800 aaoonda to Intagrata tor interior nod* molution#<— 

»> Interior node valuaa 

Zona ; 1 
Int. Rode 1 2 3 4 5 6 
X-ooor 1.3000 1.5000 1.5000 1.5000 1.3000 1.3000 
Y-ooor 1.3000 2.5000 3.5000 4.3000 5.5000 6.5000 
Potential -4.6767 -4.6808 -4.6843 -4.8843 -4.6808 -4.6767 
Flow X-dir 8.2331 6.2417 8.2481 6.2481 6.2417 6.2331 
Flow Y-dir 0.0053 0.0083 0.0042 -0.0042 -0.0083 -0.0053 

Int. Rode 7 8 9 10 11 12 
X-ooor 3.3000 3.3000 3.3000 3.3000 3.5000 3.5000 
Y-ooor 1.5000 2.5000 3.5000 4.5000 5.5000 6.5000 
Potential -10.8854 -10.8265 -10.8501 -10.8501 -10.8265 -10.8854 
Flow X-dir 8.1876 8.2543 6.2837 6.2957 6.2543 6.1976 
Flow Y-dir 0.0544 0.0620 0.0267 -0.0267 -0.0620 -0.0544 

Int. Rode 13 14 15 16 17 18 
X-ooor 5.3000 3.5000 5.5000 5.5000 5.5000 5.5000 
Y-ooor 1.3000 2.5000 3.5000 4.5000 5.5000 6.5000 
Potential -17.0411 -17.2138 -17.3425 -17.3423 -17.2138 -17.0411 
Flow X-dir 6.0618 6.3446 6.5601 6.5601 6.3446 6.0618 
Flow Y-dir 0.3146 0.3363 0.1458 -0.1458 -0.3383 -0.3146 

Int. Rode 18 20 21 22 23 24 
X-coor 7.3000 7.3000 7.5000 7.5000 7.5000 7.5000 
Y-coor 1.3000 2.5000 3.3000 4.5000 5.5000 6.5000 
Potential -22.8360 -23.7024 -24.4303 -24.4303 -23.7024 -22.8560 
Flow X-dir 3.3621 6.6761 8.0248 8.0248 6.6761 5.3821 
Flow Y-dir 1.4473 1.7856 0.8862 -0.8882 -1.7856 -1.4473 

Int. Rode 25 26 27 28 29 30 
X-coor 8.5000 8.5000 9.3000 8.3000 8.5000 8.5000 
Y-ooor 1.5000 2.5000 3.5000 4.3000 5.5000 6.3000 
Potential -28.8358 -28.6085 -35.8086 -35.6088 -28.8085 -26.6339 
Flow X-dir 1.7148 3.6102 16.3180 16.3180 3.6102 1.7146 
Flow Y-dir 4.0052 8.3302 15.5168 -15.5168 -8.3302 -4.0052 

Int. Rode 31 32 33 34 35 36 
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X-ooor 11.3000 11.3000 11.3000 11 .3000 11 .3000 11.3000 
Y-eoot 1.3000 2.3000 3.3000 4 .3000 3 .3000 6.3000 
Fotmtlal -23.2834 -27.0481 -20.0074 -28 .0074 -27 .0461 -23.2034 
Flow X-dlr -4.2012 -8.3330 -10.7338 -10 .7338 -6 ,3330 -4.2012 
Flow *-dit 2.7133 4.1384 2.8083 -2 .8063 -4,1384 -2.7133 

Int. Mod* 37 38 30 40 41 42 
X-ooor 13.3000 13.3000 13.3000 13 ,3000 13, .3000 13.3000 
Y-ooor 1.3000 2.3000 3.3000 4 .3000 3, .3000 6.3000 
FotantlaX -20.0277 -20.4134 -20.7130 -20 7130 -20, .4134 -20.0277 
Flow X-dlr -3.8383 -8.4737 -8.0003 -8 .8803 -6, 4737 -3.8383 
Flow Y-dlr 0.8886 0.7733 0.3438 -0, ,3438 -0, 7733 -0.6086 

Int. Mod# 43 44 43 48 47 48 
X-ooor 13.3000 13.3000 13.3000 13 .3000 13, .3000 13.3000 
Y-ooor 1.3000 2.3000 3.3000 4, 3000 3. .3000 6.3000 
Fotmtlal -13.8843 -14.0384 -14.1131 -14, 1131 -14, .0304 -13.0843 
Flow X-dir -6.1332 -6.2813 -6.3732 -6, .3732 -6, .2813 -6.1532 
Flow Y-dlr 0.1383 0.1468 0.0627 -0, 0627 -0. ,1489 -0.1363 

Int. Nod# 40 SO 31 32 33 34 
X-ooor 17.3000 17.3000 17.3000 17, 3000 17. 3000 17.3000 
Y-ooor 1.3000 2.3000 3.3000 4, .3000 3. ,3000 6.3000 
FotantlaL -7.7004 -7.8023 -7.8118 -7, .8110 -7. ,8023 -7.7804 
Flow X-dlr -8.2203 -8.2443 -6.2824 -6, .2624 -8, 2443 -6.2203 
Flow Y-dlr 0.0102 0.0248 0.0110 -0, ,0110 -0, 0248 -0,0182 

Int. Nod# 33 38 37 38 38 60 
X-ooor 10.3000 10.3000 10.3000 18. 3000 18, 3000 18.3000 
Y-ooor 1.3000 2.3000 3.3000 4. ,3000 3 3000 6.3000 
Fotantlal -1.3382 -1.3804 -1.3613 -1. 3813 -1. 3604 -1.3382 
Flow X-dlr -6.2402 -8.2400 -6.2443 -6. 2443 -8. 2400 -6.2402 
Flow Y-dlr 0.0042 0.0033 0.0007 -0. 0007 -0. 0033 -0.0042 
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