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INTRODUCTION

Several techniques exist for the numerical modeling of groundwater
flow. Both the Finite Difference Method (FDM) and the Finite Element
Method (FEM) have been in use for many years and have gained wide accept-
ance. A newer modeling technique has of late received much attention due
to several marked advantages. It is called the Boundary Element Method
(BEM) .

As micro-computers have become more affordable and accessible,
their use for the solution of groundwater problems has become
commonplace., One problem, however, has been the size or detail of the
model which these smaller computers have been able to successfully
analyze, particularly when the FDM or FEM are implemented. The BEM lends
itself particularly well to use on small computer systems. This is due
to the way in which the BEM can represent a particular groundwater
problem and subsequently solve it. Because of this, the BEM is poten-
tially capable of solving much larger and more complex groundwater
systems using micro-computers when compared to either the FDM or FEM.

The *founding theory behind the Boundary Element Method is
relatively simple. There are certain aspects of the implementation of
the method in a computer program, however, which become somewhat
difficult. This dissertation shall point out some of these problems and
clarify to the reader the methods the author used in developing a general
purpose, two-dimensional groundwater model using the BEM, called GWBEM.

The emphasis shall be to elucidate aspects of both the theory and actual




programming of the method as well as present certain improvements in its
implementation. |

Modularity of GWBEM was important to ensure ease of understanding
and future modifications. A widely accepted language which was block
oriented and easily read was needed. Because of this, Pascal was chosen
as the developmental language. It is a fairly transportable language
from one machine to another.

The types of groundwater problems which GWBEM is capable of solving
are two-dimensional, steady state, non-homogeneous domains with sources
and sinks. A non-homogeneous domain for the purpose of this model
consists of comnected multiple zones, with each zone being homogeneous
but not necessarily of the same conductive properties as adjacent zones.
Sources and sinks may be defined in any zone, and may be designated as
either specified potential or flow rate. Special flow situations such as
cutoff walls and corner flow are also accommodated by the model. Unknown
potential or flux values are calculated at all boundary points, and at
selected interior points as well.

GWBEM was tested using known analytical solutions to various
groundwater conditions and is also compared to results obtained by other

researchers using various analytical techniques.
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LITERATURE REVIEW

Through the use of numerical methods, researchers have been able to
develop highly sophisticated models which simulate physical systems and
allow for the solution of problems which are difficult or impossible to
solve analytically. By using and validating these models, a greater
understanding of a given physical system may be realized. Aided by the
computer, these models have, with time, become larger and more complex
and have thus been able to more completely incorporate finer details of
the systems involved. Of great interest to those involved in water
resources management has been the simulation of various groundwater
scenarios as well as the inverse problem of defining aquifer properties
from observable field data. Groundwater researchers have used various
methods of formulating such problems to solve them numerically. The
formulation methods used to solve these complex problems have evolved

rapidly in the last three decades.

Numerical Methods

Throughout the 1960s, the method of choice for solving groundwater
problems on computers was the finite-difference method (FDM). During the
1970s, popularity shifted from the FDM to the finite-element method
(FEM). The FEM had several advantages over the FDM. First, boundary
conditions were easier to apply using the FEM, and as such, universal
computer codes could be written which could be used in most types of
groundwater situations. Secondly, the actual geometry of a problem could

be used with the FEM, whereas it is oftentimes "altered" to allow the use




of the FDM (Liggett and Liu, 1983). Carr (1985) also points out the
relative ease of use of the FEM over the FDM in three dimensional
problems., Like the FDM, the FEM was a domain based formulation where the
physical problem space was represented by a collection of nodes or
elements (Pinder and Gray, 1977).

Despite these advantages of the FEM over the FDM, other methods
.were still pursued. At about the same time as the initial development of
the FEM, another formulation called the boundary element method (BEM)
started to emerge during the early 1970s. Despite its concurrent
development with the FEM, the BEM's initial applications were somewhat
limited. But, as its advantages over the FEM were eventually realized,
its use spread. Today, it is used to solve problems of a wide variety,
ranging from structural analysis to predicting wave action through off-
shore drilling platforms (Brebbia, 1985).

The BEM’s advantages over the FEM's are numerous. Brebbia (1985)
and Liggett and Liu (1983) discuss several. First, most problems are
reduced by one dimension when solved using the BEM. This is particularly
advantageous when dealing with problems in three dimensions. The amount
of data preparation required for the BEM is considerably less than with
the FEM. Less data preparation means less errors in coding. The inter-
element continuity requirements are also much less stringent with the
BEM, which allows for more abrupt changes in element size over different
areas of a model domain when compared to the FDM or FEM.

The location of internal points which require a solution may be

specified using the BEM with those points being the only internal ones




required. The FEM, by contrast, calculates solutions at all interior
points which are required for grid definition, which results in unneces-
sary effort. The interior points are required of the FEM for proper
solution, whereas the interior points specified in the BEM are only at
points of interest. Problems of infinite domain can be accurately solved
using the BEM using special elements. In contrast, the FEM requires the
mesh to be truncated at some finite boundary. Finally, since the BEM
reduces the dimension of a problem by one, the number of equations which
must be solved is also reduced. This can result in substantial savings
in both computer storage and run times, making the BEM highly desirable

for micro-computer applications.

Development of the Boundary Element Method

The development of the BEM as applied to groundwater problems
apparently originated in two camps. The initial groundwork was laid out
by Kellogg (1929) who used the integral equation method for the analyti-
cal solution of Laplace type problems. The first to propose a numerical
solution to problems using the BEM was Trefftz in 1926 (Brebbia and
Chang, 1985). Unfortunately, his method was hindered by the lack of
computers during his time. In Western Europe, groups of researchers
started to explore the possibilities of using the BEM in the early 1970s.
Brebbia (1978) published the first general text on the use of the BEM for
engineers. Although the text was not limited to problems dealing with
flow through porous media, it did contain discussions on LaPlace
problems. In the United States, Liggett (1977) published a paper on

determining the location of the free surface in porous media. This was




probably the first paper which specifically addressed a groundwater
problem using the BEM. Since that time, a plethora of research has been
done on the BEM, with annual conferences being held (Brebbia, 1984).
Banerjee (1979, 1982, and 1984) has been the principal editor of a number
of volumes dealing with the latest developments in the BEM and its

applications.

Applications to groundwater

The BEM’'s initial use in groundwater problems was somewhat limited
as it was only able to solve steady-state problems with isotropic media.
However, recent developments in the BEM have occurred which significantly
broaden the scope of groundwater problems which may be solved. Banerjee
et al. (1981) discussed the use the BEM for two dimensional problems with
transient groundwater flow. Cheng (1984a) developed a method for
calculating Darcy’s flow with spatially varied permeability using the
boundary integral equation method. His paper gave examples of Green's
functions based on certain permeability distributions which could be used
to fit field data and which would lead to the.BEM solution. However, he
only provided functions for one and two dimensional problems.

The application of the BEM to seepage problems in zoned anisotropic
soils was presented by Brebbia and Chang (1985). Their method broke down
permeability into orthogonal tensors for homogeneous zones. When several
different homogeneous zones were present within one problem domain, the
method called for the formation of separate subregions having the same
properties. Continuity and equilibrium were then maintained at each

boundary between the subregions. If there were a large number of zones,




it could be more advantageous to use the FEM in this situation, although
the authors claim to get better accuracy using the BEM. As the number of
zones increases, the BEM becomes more like the FEM, with the "mesh"
becoming finer to define the problem domain.

The use of the BEM with non-linear conditions, as would be encount-
ered in unsaturated groundwater flow, are still being examined by several
researchers. Blalecki and Nowak (1981) wrote on the use of non-linear
material and boundary conditions in heat conduction problems, while
Brebbla and Skerget (1984) discussed the use of Kirchhoff’s transform to
linearize non-linear material properties. Thé transform can be applied
to both steady-state and transient conditioﬁs when only Neumann (spec-
ified flux) and Dirichlet (specified potential) boundary conditions are
used. Rubin (1968) provided a similar use of the Kirchoff transform in
an application to transient flow in partially saturated soils.

Extensions of the BEM method for groundwater problems have also
increased in the last few years. Tolikas et al. (1983) combined the BEM
with non-linear programming techniques to manage and optimize the
operation of an aquifer in Greece. They reported excellent results and
great efficiency in the case of steady-state flows and homogeneous
aquifers, but felt more work was required for transient problems and
nonhomogeneous media. Kemblowski (1984) provided a BEM solution to
simulate salt-water upconing under the Smokey Hill River in Kansas. The
model predicts the free-surface and the interface between fresh and

saline waters due to changing boundary conditions.




Dillon and Liggett (1983) developed an ephemeral stream-aquifer
model based on the BEM. It is a two dimensional vertical slice model
capable of simulating a stream-aquifer system when they are hydraulically
connected or disconnected and any transition between the two states. The
model was successfully calibrated using data from a South Australian
aquifer system. Shapiro and Andersson (1985) formulated a method for
simulating steady-state flow in three-dimensional fracture networks using
the BEM. The model treated the host rock as impervious and the fractures
as surfaces where fluid movement was two-dimensional, Fracture intersec-
tions were modelled as one-dimensional conduits. As opposed to other
models dealing with transport through fractured media which consider
average characteristics, Shapiro and Andersson’s model considered
discrete fractures. Although their model would be cumbersome to use in
highly fractured rock, its application to simple fracture systems would

be advantageous due to its numerical efficiency.

Existing Computer Models

An effort was made to determine the existence of any BEM based
computer models. A computer search conducted in 1986 through the Holcomb
Research Institute of Indianapolis, Indiana produces four computer
groundwater models based on the BEM (Holcomb Research Institute, 1986).
The institute maintains a data base of known computer models which deal
specifically with groundwater. Since that initial search, a recent
reference on the BEM (Mackerle and Brebbia, 1988) has been published. In
it, some 135 computer models which use the BEM to solve various types of

problems are listed. As evident from these figures, the use of the BEM




has increased considerably in recent years. Of that 135 however, only
eleven were targeted for micro-computer use and of that eleven, only
three dealt specifically with potential problems. Of those three, none
listed any capabilities for including interior sources or sinks, multiple
zones, or the solution of flux at interior points. Only one of the
models listed the capability of solving for interior potentials. What is
evident here is that only a small percentage of the programs available
for micro-computer use are tailored for groundwater flow problems, and
that their capabilities are limited. Although many capable potential
flow programs exist on mainframe computers, the existence of comparable

BEM programs on micro-computers is lacking.

Conclusions

As can ﬁeen seen, the use of the boundary element method .for the
solution of groundwater problems is well established. 1Its advantages
make it well suited to solving complex groundwater systems with a minimum
of input data generation and computational effort. Although many main
frame computer models based on the method exist, a relatively small
number with limited function are available for micro-computer use. The
need for a micro-computer program which is easy to use yet capable of
handling a broader assortment of groundwater problems exists.

A second need also becomes evident with a review of the BEM
literature. Unlike its numerical predecessors, the FDM and FEM, scant
literature exists for the BEM which deals with the actual programming
techniques required to use it. This occurs in spite of the large number

of publications dealing with the BEM. Many references present the
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theory, but moving from theory to actual application is often difficult.
The need exists, therefore, for a general purpose groundwater model which
makes use of the BEM, but which can also be used as a tool in illuminat-

ing various means of implementing the BEM on a micro-computer.
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MODEL DEVELOPMENT

This discussion presents the development of the BEM for steady-
state flow in a saturated porous medium. It starts with a review of the
basic equations for groundwater flow. Following this will be an overview
of the basic theories behind the boundary element method (BEM) for
potential problems. Finally, the details of applying the BEM to ground-
water problems are presented. This final section shall also discuss the

actual implementation of the BEM using a micro-computer.

Basic Groundwater Equations

Raxcy’s law

Microscopically, the actual process of fluid flow through porous
media is an extremely complex one. A fluid flowing in such a medium is
forced through pores of varying diameter and connectivity. Because of
this complexity, the actual determination of such flow usually requires
that one look at the process macroscopically and ignore the microscopic
details (Hillel, 1982). |

During an investigation of fluid flow through sand filters, the

French engineer Henri Darcy noted the following relationship:

ve-RKV | (1)

where

= seepage velocity,

= hydraulic conductivity,
gradient operator,

e g9 R 4
1

= potential function.
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The potential function, & is defined as:

- B 42z, (2)
Pg
where
P = pore water pressure,
P = fluid density,
z = elevation above some datum.
Consexrvation of mass

Conservation of mass for steady-state porous media flow neces-
sitates that the rate of fluid flow into any saturated volume be the same
as the flow rate out (Freeze and Cherry, 1979). By assuming that the
compressibility of the medium and the fluid are relatively small the

equation for the conservation of mass can be stated mathematically as:

avk av, avz (3)

Substitution of Darcy’s Equation 1 into Equation 3 yields the flow

equation for anisotropic porous media flow:

a0 3%

ad
v oy - xSy 2%ed) ()
ax ay dz :

If the medium is isotropic, then Ky = Ky - Kz. Also, if the medium

is homogeneous, then K(x,y,z) = constant. Equation 4 then reduces to

Laplace’s equation, or:
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VD = + =+ 2-o. (5)

Laplace’s equation is valid for steady flow in either confined or uncon-
fined aquifers. By the use of adequate boundary conditions, it can

satisfactorily model many groundwater situations.

Sourcege and sinks

For large scale groundwater modeling, wells are often idealized as
sources or sinks (Liggett and Liu, 1983). Fluid enters or leaves the
medium from a point. To incorporate this, the equation of conservation

of mass (Egquation 3) is modified to include a source term:

N, '
Vv = -kZIQkS(x-xk) §(y-y,) 6(z-2,) (6)

N = number of sources,

Qk = flow rate at kth source (out = positive),
(%), ¥k 2x) = coordinate of kth source, and

§(p) = Dirac delta function, zero for pw0 and one for p=0.

Inter-zonal compatibility

Whenever two zones with differing hydraulic properties meet along a
common boundary, certain conditions exist along that boundary. First,
the potential & at any point along the boundary between two zones is the
same for either zone. Second, continuity across the boundary is main-
tained. The flow -K3®/dn across a common boundary leaving one zone is

the same as the flow entering the adjacent zone (Cheng, 1984b). Taking
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advantage of these relationships allows one to solve for boundary values

on the interface which would otherwise be indeterminant.

Development of the Boundary Element Method

To apply the BEM to groundwater problems, two concepts must be
introduced. They are Green’s second identity and the concept of funda-
mental solution. This development follows that of Liggett and Liu (1983)
and Brebbia (1978).
Green's gecond identity

Green’s second identity is the primary foundation for the BEM. For
an understanding of this identity, one must start with the divergence

theorem. This theorem states that:

J' (V:V) d} = I Vin dr (7)
Q r
where

v = some differentiable vector function,

Q = domain of integration (volume in 3D, area in 2D),

n = outward unit normal vector, and

r = domain boundary (area in 3D, line in 2D).

It should be noted that V-V = div V. Another way of looking at the
divergence theorem is to consider some fixed volume within a porous
media. Imagine that fluid is either entering or leaving this volume
through its boundary and that the density of the fluid within that volume
is changing accordingly. With this in mind, one can regard the left-hand
side of Equation 7 as the rate of change in fluid density within the

volume while the right-hand side is the amount of fluid mass per unit
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time which is passing through the boundary of the volume to effect that

density change (Kaplan, 1984).
To derive Green’s second identity from the divergence theorem, one

defines V as AVB, where A and B are twice differentiable scalar functions

in the domain Q. Substituting this into Equation 7 produces:

I (VA-VB + AV23)d0 - j AVB-ndI’. (8)
Q r

Redefining V as BVA produces:

_[ (VB-VA + BV2A)dn = I BVA-ndr. (9
a r

Finally, subtracting Equation 9 from Equation 8 forms Green'’s second

identity, or:

I (AV?B - BVZA)dn = _[ (AVB - BVA)-ndr. (10)
a r

Fundamental solutjon

The final step in applying Green'’s second identity to saturated
porous media flow problems requires that the functions A and B satisfy
Laplace’s equation, i.e. v24 = v2B = 0. Since the product of the
potential function and constant conductivity for isotropic media K@
already satisfies Laplace’s equation (Equation 5), it can be assigned to
A, The function B is assigned a fundamental solution of Laplace'’s

equation. A fundamental solution is simply some function which satisfies
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the field equation. In potential theory the fundamental solution is
called a free space Green’'s function (Alarcon et al., 1979) and will be
denoted as y. This function satisfies Laplace’s equation everywhere but
at a singular point S(x), where it goes to infinity. Substituting y and

k® into Equation 10 and noting that V23 - Vzw = 0 leaves:

I (K&V$ - $VKS) -ndl = 0. (11)
r

The dot product VK®-.n represents the flow velocity normal to the
boundary, or in differential notation 3K®/dn. The dot product Vi-n
represents the normal derivative of the fundamental solution at the
boundary . A shorthand notation for these normal boundary derivatives
shall be ®' and p’ for the potential function derivative and the funda-
mental derivative, respectively. It is important to note that the
conductivity K is included in the normal derivative for &, such that the
flux boundary shall be in terms of normal flow and not normal flux. With

this notation, Equation 11 becomes:

I (KPy' - ¥2')dl' = 0, (12)
r

The form of the free space Green's function, or i, varies depending
upon the dimensionality of the problem. For two-dimensional problems,
¥ = In r, where r is the distance from the singular point S to some other
point on the boundary. In three-dimensions, ¥ = 1/r. For a complete
derivation of the two and three dimensional fundamental solutions, the

reader is referred to either Brebbia (1978) or Liggett and Liu (1983).
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For the remainder of this discussion however, only the two-dimensional
case shall be considered.

Since the fundamental solution ¥ is singular at the point S, the
point S must be excluded from the domain @ of the problem in order to
carry out the integration in Equation 12. To do this, the singular point
§ is surrounded by some infinitesimally small "shell" of radius r,
isolating it from the rest of the domain, thus creating a multiply

connected domain. Equation 13 shows this as:

d . a '
Jﬁkﬁsa(ln r) - (Inr) &)dr + iif ékwsz(ln ro) - (In ro) ®')dl’ = 0. (13)
o

Graphically, this can be seen in Figure 1.

tapxd“ Domain boundary

Domain

0

Figure 1. Boundary integration of domain @ with singular point S

The two portions of the boundary integral running into the domain
and connecting the actual boundary I' and the infinitesimally small shell

7 surrounding point S cancel one another out. They therefore do not
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appear in Equation 13. The limit of the second term of Equation 13 as r,

goes to 0 is -27xK®. Equation 13 then becomes:

I (K%(ln r) - (In r) @')dT = 27K®(S) (14)
r

Singular point S -~ 7

Figure 2. The singular point S moved to the boundary I'

The singular point S can be anywhere in the problem domain @ or on
the boundary I'. In moving S to the boundary, one still excludes it from
the integration by an infinitesimally small shell y. However, instead of
being a circle, as in Figure 1, it becomes an arc whose subtended angle
(a) is determined by the geometry of the surrounding boundary I' as in
Figure 2. The multiplier 27 in the right-hand side of Equation 14 is

replaced by a or:

I (x¢5g(1n r) - (ln r) &')dl = akd(S) (15)
r




19

The value of ® can be calculated atvthe point S using either
Equation 14 or 15, depending upon the location of S. However, in their
present form, neither equation can be used directly in the calculation.
This is because the necessary values of & or @' are not known everywhere
on the boundary in a well posed problem. These missing boundary values
must be calculated before either equation can be applied. Also, the form
of Equations 14 and 15 requires analytical integration around the
boundary, which for most problems is impossible. These problems are
addressed in thelnext section. However, once all of the boundary
conditions are known everywhere on I', Equation 14 can be then be used to
find the values of ¢ or its directional derivatives anywhere in the

problem domain Q.

General solution technique using the BEM

Since in a well posed problem neither & or &' are known everywhere
on the boundary I', a means must be available for calculating them before
interior values in the domain can be found. The BEM provides just such
means through Equation 15. This process involves moving the singular
point S to the boundary and applying the equation at various points
around I'. In order to use Equatibn 15, however, certain assumptions must
be made about the boundary and its condition.

Discretization First, the behavior of the functions which make
up the boundary conditions for the problem must be defined. This
involves identifying where and what type of boundaries exist in a

specific problem. The boundaries most commonly encountered in porous

media flow problems are Dirichlet, or specified potential, and Neumann,

o etk e s b st s 7 4.




20

or specified flow, boundaries. These boundaries shall be denoted by rq
and I'y, respectively. The boundary must be discretized 1nt; elements'

which must be placed so as to adequately describe the boundary geometry
and conditions. This discretization oftentimes oécurs at changes in a

boundary type, or possibly at a geometric transition or corner.

These boundary elements may be defined by either single or multiple
points, called nodes, along the boundary. The nodes may be either in the
interior of an element or at its ends. The number of nodes which are
required to completely define a boundary element depend upon the type of
element which is being used. What is important at this point is to
realize that instead of applying Equation 15 over the entire boundary
analytically, the boundary will be segmented and the equation applied to
each segment. The specifics of boundary discretization will be discussed
later.

Shape functions Once the boundary is suitably discretized into
elements, an estimate of the beﬁavior of the boundary functions across
each element is made. This approximation of boundary function behavior
is called an shape function, or interpolation function, and will be
denoted as M. Each node in an element is assigned a shape function which
relates its nodal value to all other nodal values for the element. These
shape functions vary as to order (i.e., constant, linear, quadratic,
etc.). It is this order which determines the number of nodes which an
element needs to be totally described. The types of elements may be seen

in Figure 3.
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Shape of boundary values at element

v
x\\\\\\\\\\\ Constant shape function

Linear shape function

Quadratic shape function

/

Node Element

Figure 3. Examples of element shape functions

The elements themselves may be straight or curved, in order to best
describe the geometry of a particular problem while the shape functions
may be of any order which adequately describes the behavior of the
boundary conditions across that element. In a groundwater problem, these
boundary conditions are usually either prescribed potential (&) or flow
(®'). Figure 3 shows straight elements with three different orders of
shape functions, represented by the shaded areas above each straight
element. The locations of nodes shown in each element in Figure 3 are
not fixed. As long as there are enough nodes for the type of element
being prescribed, and as long as the location of the nodes is accounted
for in the definition of the shape function, the nodes may be placed

anywhere in the element.
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The standard element used for the remainder of this discussion and
which is the basis for the computer model GWBEM will be a straight, two-
node boundary element using a linear shape function. The reason for this
is two-fold. First, the remainder of the derivation of the BEM using
linear shape functions is complete enough to cover the important aspects
of the technique without hindering the novice with excessive details.
Secondly, the quality of data most often available for groundwater
problems is insufficient to warrant the use of more complicated elements.

Boundary solution To calculate the unknown boundary data using

the BEM, the boundary must be completely discretized into elements as in

(Field point)
4

n = nede
(n) = element

Singular point § <7 1
(Base point)

Figure 4. Example of boundary discretization with linear elements and
base and field points

Figure 4. Equation 15 is then applied at each point around the boundary.
The r is the distance from a "base" point S on the boundary to some
"field" point. Each node on the boundary serves in turn as a base point,
with the remaining nodes serving as field points for each base point.

This generates a set of equations. With each of the resulting equations
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relating ® to @' at every node on the boundary, and with either & or &’
being known at each boundary node, there are as many equations as
boundary unknowns. This creates a solvable system of equations whose
solutions are the unknown boundary values at each point on the boundary.
A problem develops during the integration around the boundary when
the base point and the field point coincide. Since r = 0 in this case,
the first term of the left-hand side of Equation 15 must receive special
treatment. With the base point isolated from the domain by a small
circular segment vy of radius r r,, as in Figure 2, the first term of

Equation 15 becomes:

I :2(1n r) ar - I"a" -J:o

This is obtained by differentiating the ln r term with respect to n

LRl

(-l)rodﬂ = -ad. (16)

and transforming the integral to polar coordinates. This means that
during the assembly of the system of equations, which will be discussed
in further detail in the next section, the contribution of the base point
to itself is the wvalue of -a at the base point. For a smooth section of
boundary, this value is -x. A smooth boundary section is simply a

straight line through the point.

Two-dimensional BEM with Linear Elements
This portion of the discussion of the BEM parallels that of Liggett
and Liu (1983). Their approach was the most workable of all the methods

investigated, both in terms of illuminating the intricacies of the BEM
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and in making the programming of the method more intuitive. Extensions
to their method were required at various steps in the programming

process, which shall be discussed as they appear.

Base point
S, Boundary element
Figure 5. Linear element showing local coordinate system § and n and

boundary value ¢

Linear elements

A typical linear element is shown in Figure 5. The element is made
up of two nodes located a distance L apart. For the purposes of this
discussion, the nodes shall be located at the ends of the element,
although as noted previously, this is not required. The nodes are
denoted as j and j+1 respectively. The local coordinate system for the
boundary element consists of two components: p, which is the normal
distance to the element from the base point S; and £, which is as shown
in Figure 5. The 4 shown in the figure is the angle the element makes
with the global x direction. A general scalar boundary function ¢ varies

linearly across the element. Each nodal value of ¢ is identified by a
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subscript, with the intra-element values of ¢ being defined by the

equation shown in the figure.

To derive the shape functions qj and ¢j+1 for a linear element, the
unknown coefficients c; and cy need to be found in terms of the nodal ¢

values and the local coordinate §. Segerlind (1984) developed these

coefficients as:

- P50 $gndy

17 T - €

J¥l J (17)
- ¢t+1 < ¢l
2 Lt

In Segerlind’s derivation, these coefficients were substituted into the
equation for ¢ in Figure 5, L was substituted for €j+1 - éj, and terms

were rearranged producing:

§i01° ¢ §€- ¢
Rl e TR e LY e

In Equation 18, each nodal value of ¢ is multiplied by a linear
function of §. These functions are the shape functions Mj and Mj+1 for
the nodes j and j+l, respectively. To produce the proper value of ¢
everywhere on the element, the shape functions must have certain proper-
ties. First, the shape functions for each element node must sum to one
at any location £ on the element. Second, the value of a shape function
must be unity at its respective node and zero at any other nodes on the

element. Both of the multipliers shown in Equation 18 exhibit these

properties.
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Equations for boundary solution

For any linear boundary element with nodes at the ends, Liggett and
Liu (1983) used a rearranged form of Equation 18 to describe the linear

approximation for the boundary potential & as:

(P17 @8 + (€508 £2,,0)] (19)
- €p-

Q=
The approximate normal derivative &' is:

o LB e s €y 0
@0 &p-

The integral equation for each element, based on Equation 15, is of the

form:

J+1|K® ari (21)
Ie- J.:j [r—i— —a-"— - & lminf

Substituting the linear approximations for & and &’ from Equa-
tions 19 and 20 into Equation 21, a series of integrations are performed
which produce a set of equations relating the base points S; on the
boundary I' to each pair of field points j and j+l defining a boundary

element. The terms associated with the nodal values of & and &' are

e (-}
2 (22)
{;J+1}

collected to form:
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where:

K

= ¥ alip I1¢5,]

=0

(23)

Ko = U-I91*j01T90 I91-€5195]-

o

The I terms found in Equation 23 are integrals and are discussed in
the section on the micro-computer implementation of the BEM. The K©
terms in Equations 22 and 23 should not be confused with the X term used
for hydraulic conductivity. By applying Equation 22 to each element on
the boundary and summing up all the element integrals for each base

point, one obtains a set of simultaneous linear equations of the form:

N N .
S R, ,Kg=3 L .0 (24)
T R AR WA

where:

0 imj

R, ~ [, -6 .a.] & "
i,J Vi g "4,574° 1,5 L1 i=j (25)

e
Ly~ &g 5

The R coefficients shown in Equation 24 relate to the I'; boundary
conditions and the L coefficients are associated with the I'; boundary
conditions. These coefficients can be assembled into a system of linear

equations with the knowns on one side and the unknowns on the other,

forming:
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Ax = B (26)
where:
A = coefficient matrix of unknown boundary values from each
boundary node,
x = unknown boundary conditions (& or ¢') for each boundary
node, and
B = summation of product of integral coefficients and known

boundary values for each node on the boundary.

System assembly and solutjon
Equation assembly The placement of the coefficients R and L

from Equation 24 into the system matrices depends upon the type of
boundary encountered at each element. If the known boundary condition at
an element is a Dirichlet boundary (Pl), then the integral coefficients R
for that element are multiplied by the known nodal potential values ¢ for
that .element and are placed into B. The integral coefficients L are then
placed into A without being multiplied by any nodal values as these are
unknown.

The reverse is true if an element is a Neumann boundary (P2). In
this case, the L coefficients for the element are multiplied by their
respective nodal flow velocity values, ®'. These products are placed
into B while the R coefficients for the element are placed into A. A
accumulates the coefficients R or L without any multiplication by
boundary values. B, on the other hand, always receives the integral

coefficients after they have been multiplied by some known boundary

values.
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Each row of A and B has a matching boundary node. The row index i
refers to each boundary node as it serves as base point for boundary
integration. Each column of A corresponds to an unknown boundary value,
or degree of freedom (DOF). As each element is integrated using Equation
21, the node numbers j and j+1 of the nodes defining the element being
integrated become the colvmn indices of A since there is one DOF for each

boundary node.

2 1Base point
12 3 45

L1 o000 o0 o o

2] o0 00 o0 o o

3 S O O O O < _ ¢

4 O ¢ O ¢ O o ¢

5 O O O O O < ¢
A X B

(Unknown coefs. ) (Known coefs.)
Figure 6. Placement of integral coefficients into system equations

Figure 6 depicts the assembly of an example system. In the figure,
node 1 is the current base point for the discretized boundary integra-
tion. With node 1 as the base point, all of the integral coefficients
Rl,n and Ll,n found using Equation 21 during the discretized boundary

integration are placed somewhere in row 1 of either A or B, As is also
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shown in Figure 6, the integration is being performed on element 2, which
is a I'y boundary and whose end nodes are 2 and 3 respectively.

The integral coefficients L corresponding to the boundary DOFs at
each node of element 2 are added into A. The coefficient for node 2 with
node 1 as base point (L1'2) is added into A at row 1 and column 2. The
coefficient for node 3 with node 1 as base point (L1’3) is added into A
at row 1 and column 3. Consequently, the integral coefficient R1,2 is
multiplied by 29, with the resultant product added to row 1 of B. The
same thing is done for R1’3, except that &3 is the multiplier. This
product is also added to row 1 of B.

Each column within A is accessed twice during the integration from
each base point. This is because as the integration moves around the
boundary, each boundary node serves first as the crailiﬁg node for one
element and then as the leading node for the following element.

Equation solution Once a complete boundary integration is
performed using each boundary node as base point and the integral coeffi-
cients from each integration have been properly assembled into the system
equations, the system unknowns can be obtained using any standard
equation solver. The system solver used in GWBEM is adapted from
Forsythe, Malcolm, and Moler (1977). Their method contains two steps,
decomposition and back substitution. The Pascal listing of this may be
seen in the procedures DECOMP and SOLVE of unit B7SOLVER.PAS in Appendix
A. The decomposition step performs the Gaussian elimination, which is
dependent on the matrix only. This is advantageous as the system matrix

is based solely on the problem geometry. The multipliers and pivot
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information from the decomposition are saved and can be applied to any
right-hand side, allowing for the solution of different sets of boundary
conditions for a given geometry from only one decomposition. The decom-
position routine also provides the condition number of the system matrix.
The condition number is a measure of the singularity of the system
matrix. The higher the condition number, the more ill-conditioned the
system matrix.
Equations for interjor solutjon

Once all the values on the boundary are known, it is then possible
to obtain the solution at points in the interior of the domain Q.
Liggett and Liu (1983) also derived analytical integrations for the
solution at interior points with the BEM, using Equation 14. To obtain
the potential ® at any interior point, one simply integrates around the
boundary using the selected interior point as base point. However, since
all of the boundary values are known at this point, one generates a
single equation for the value of & at the base point based upon Equation
21. This may be repeated for as many interior points as desired.

The solution for flow velocity values at interior points is not as
straight forward as those for potential at interior points. The flux
value solutions involve differentiating Equation 14 with respect to the

desired direction of flow. The equations for flow velocity in the x and

y directions are:

d - 1 sind 2n(€cosf-nsind) ., £€cosf-nsind
’a;Q(S) n -L‘[ ) K® + r4 K + r2 o]dr (27)

e b < M 0 kb
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Q_Q(s)__l__j [_cosDK@ + Zgggcosz+§sinazxa + gcosﬂ+§sin0l,]dr (28)
r r

ay 2x r2 | r2
where:
n & £ = 1local coordinates as defined in Figure 5,
0 = angle element makes relative to global x direction, and
r = distance from base point to field point.

The use of Equations 27 and 28 for the determination of interior
flow velocity values is similar to that for interior potential values.
For each interior point where the solution is desired, a boundary
integration is performed using each interior point of interest as base
point. The specific form of the integrals is somewhat different for the
flow velocity values than it is for the potential solution. Their form

is discussed in further detail in the next section.

Micro-computer Implementation

This section shall continue the derivation of the BEM by presenting
the computer implementation of the methods discussed in the previous
section. References will be made throughout to the Pascal listing of the
computer program GWBEM found in Appendix A and which is the result of
this work. All of the integrations used in this implementation are
analytical. This was done to avoid excessive round off error found in
many numerical integration methods and to avoid numerical complications
encountered during the integration of certain singular integrals found

throughout the BEM.
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Boundaxy solution

To solve for the boundary unknowns, the I coefficients found in

Equation 23 and subsequently the K® terms in that equation need to be

calculated. To derive the I;, coefficients, one takes the linear approx-

imation of & from Equation 19 and substitutes it into the first term of

Equation 21. This produces:

J+l J¥l

o or, _ J(j+1 ")f*(imj €jj+i|ar a (29)
r,dn (€J+1 EJ) r, an ’

¢ ¢

Rearranging terms as in Equation 23 and substituting L for €j+1 - £j, the

111 and 112 coefficients take on the form:

J+l

1 1 ar
In™ | F ot

1
I = 2 -1 d§.

12

Performing these integrations yields:

. It + ¢5  [fn
11 7L ¢
tan'l [S- Ej+1
"3
I)p = L ¢

(30)

(31)
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where (02 + 52)1/2 has been substituted for r. The values of Kle are
then calculated from the I coefficients with the use of Equation 23.

The Iy, coefficients used to find the Kze terms in Equation 23 are
derived in a similar manner. Substituting the linear approximation of &’
from Equation 20 into the second term of Equation 21 yieids the Iy,

coefficients as:

41
1
21~ L | nrgé 4

&

I

(32)
J+l
1
122- 2 lnri d¢.

4
The integrated form of these coefficients is:

{1

Lm0 + gD [inarf + ¢h-1]
4

21 4L

(33)
$1n(n§ + 52)-2$+2171tan'1 [;,5—] €j+1
I, - L=l

22 2L £5.

Once the X® terms are found for each element, they are assembled into the
system of equations as discussed above. The Pascal listing for the
integrations discussed above are contained in the procedure Integrate

Boundary of the unit B7INT.PAS found in Appendix A.
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What ultimately emerged while working with the equations for the
BEM using linear elements was a recurrent pattern of basic formulas for
both the boundary and interior solutions. Liggett and Liu (1983)
provided many of the analytical integrations used with linear elements

for the BEM. These integrals were checked and modified for use in GWBEM

the table were found by first substituting ("2 + 52)1/2 for r in each

Table 1. Basic formulas encountered with the BEM using linear elements

and adapted from Liggett and Liu (1983)

It should be noted that the integrations in

Form I: J.—i'_— dé --3"— tan'l[-s’-]

Form II: Jl—f_— d¢ -—;’- In (02"' €2)

Form III: Jl-é d¢ = (€ - g tan'l[-s-])

. 1 ¢ 1 -1[ &
Form IV: - df = + tan [ ]
I r? 202+ €5 29 n
Form V: £ d¢ = - L
I e 2(n%+ €%)
2
Form VI: I—L dé = - 1 + =k tan'l[i]
r2 2(’72_’_ 52) 2n n

Form VII: I 5 € Inr & = = (n%+ €)) [In(n®+ £D)-1]

Form V111=I —;- In r & = —%—[6 In(n?+ €%) - 2¢ + 2ncan'1[€-]
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equation. By utilizing the formulas shown in Table 1, the derivation of

the other equations for the BEM becomes much simpler. These basic forms

shall be used where applicable in the following derivations. Each of the
formulas found in the table and which are used in subsequent equations

shall be referred to by its Roman numeral listed in the table.

Interjor solution

The equations used in the computer implementation of the BEM for
the solution of ® in the interior of the domain are identical to Equa-
tions 31 and 33, which generate the I coefficients used in Equation 22.
Equation 22 is applied to every element on the boundary while the

interior point of interest is used as base point.

For the calculation of the interior flow velocity values, one sub-
stitutes the linear approximation of & (Equation 19) and &' (Equation 20)
into Equation 27. The terms can then be rearranged and integrated so
that the form of the equation resembles Equation 22, with coefficients K©

are multiplied by the nodal values of ® and &' on the boundary, or:

8 _ IK'I % } + IK'I{ o } + IK'I{ ¥ } (34)
aw = K1 {;j+1 2lled; ) LY

where w is any direction in which the flow velocity is to be calculated

and where the K’ terms are defined as:

K| = [-Iyp* jeaTygi T1p-€570,]

- (- ] —— ) 35
Ky| = [-Ipp* Ipg + &5 Wgp- Tpy) 5 Ipg- Ipgt £;C-Tppt Ip01 (39

Ky| = [-Igg+ I33 + €540 Tap- I3,) 3 Igq- Iggt £;(-Igy+ Iy,)]
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Using this form, the interior flow velocity values in any direction
may be obtained by substituting the I terms with theilr proper values for
that direction. For the flow velocity values in the x and y direction,

the values for I are those shown in Table 2.

Table 2. I coefficients for flux in the x and y directions

I term Flux x direction Flux y direction
Ill sind (I1) -cosf(II)
I19 sind (1) -cosd (II)
I 2ncosd (VI) 2nsing (VI)
Ipg 2ncosf (V) 2nsind (V)
Igg 2n251n0(V) 2"2c050(V)
Iog, sind(1II) cosf(I1I)
I3 cosf(I11) sind (1I1)
I39 cosﬂ(iI) sing (11)
.133 nsind (11) ncosf (II)
Iy, nsind (I) ncosf (I)

The Roman numerals found in Table 2 refer to the basic formulas
listed in Table 1. As such, each formula is multiplied by the terms
shown to produce the I coefficients used in Equation 35 and ultimately in

Equation 34. The n in the table is the normal distance to each element
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from the base point, as defined in Figure 5. 0 is the angle each element
makes with the x axis. The Pascal listing of these equations is found in

procedure Integrate Interior of Unit B7INT.PAS of the program GWBEM found

in Appendix A,
Sourcee and sinks

Problems with wells require special techniques during the assembly
of the equations for the boundary solution. As discussed previously,
wells can be idealized as sources or sinks where the flow enters or
leaves the domain through a point. Equation 6 shows the modification to
Laplace’s equation used to accommodate this.

Lafe et al. (1980) proposed a method of superposition to accom-
modate sources or sinks in the interior of a domain using the BEM.
Unfortunately, the treatment allowed only for the solution of potential
at a point with flow as the known value. It was desired that GWBEM allow
either type of condition to be specified at a point. Therefore, a
technique advanced by Radojkovic and Pecaric (1984) was used for the
solution of domains with wells.

Their method involves including terms for each well point into the
system of equations normally generated with the BEM for the boundary
solution. The basic form of the terms added for each well point is
ln({j), where rj is the distance between the well node j and some other
node, either on the boundary or in the interior of the problem domain.
The placement of each term in the system of equations depends upon the

type of condition specified for each well node.
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If the flow rate QJ is specified at a particular well J, then the
product of len(rj) is subtracted from the known vector B. The row of B
corresponds to the base point from which the boundary integration is
performed. Conversely, if the potential is specified at a well, the
value 1n(rj)K is added to A at the row matching the base point of
integration and the column coinciding with the node number of the current
well node.

GWBEM considers well points as additional, yet separate, boundary
nodes, For example, if a problem boundary was discretized using five
boundary nodes and if two wells were found in the problem interior, there
would be a total of seven boundary nodes defining the problem. The total
size of A would then be 7 x 7. GWBEM also considers flow out of the
domain as positive. Therefore, a pumping well would be defined positive,
and an injection well defined as negative.

Boundary values The inclusion of each well node into the system
of equations during the solution of the unknown boundary values is
carried out in procedure Integrate Boundary of GWBEM. In the loop which
performs the integrations over the regular boundary using Equation 21,
the presence of well nodes is checked. If well nodes are found in the
problem domain, the ln(r) terms which account for the contribution of
each well node are added to the system of equations at the end of each
integration loop around the continuous boundary.

After all of the regular nodes on the continuous boundary have been
used as base point for a boundary integration, another loop is entered

which integrates from each well node to every other boundary node,
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including any other well nodes. During the integration from each well
node to the nodes on the continuous boundary, the value of a for each
well node is 2x and Equation 21 is applied as usual. While integrating
from one well node to another, the values added to the system of equa-
tions are identical to the 1n(r) terms. One exception should be noted
which occurs when the well node acting as base point becomes the same
point being integrated to. In this situation, r becomes the radius of
the well rather than the distance to some other node. Since the wells
are included as boundary nodes, solution of the resulting system of
equations not only produces the unknowns on the continuous boundary, but
also the unknowns at the well nodes.

Interioxr valuesg Once all of the boundary unknowns are estab-
lished, including the unknown well values, the interior values at
selected points can be determined using.a modified form of the interior
solution using no wells presented previously. The potential values are
modified by adding the product len(rJ) for each well to the integral
value for potential at each interior point found by the method described
earlier for Equation 22. The variables of the additional product for
each well are the same as for the boundary solution case. This operation
is performed in the nested procedure AddSources in the global procedure
Integrate Interior of unit B7INT found in Appendix A.

The values for flow velocity at interior points also require
modification when wells are present. The values of d%/dx and 3%/dy are
first determined using the method discussed previously for Equation 34,

The results are then added to the products (r,Q j)/(rz) and (r,Q j)/<r2)

TR R SRS SN
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respectively. The values of r, and ry refer to the distance between the
well and the selected interior point in the x and y directions. This
summation is done for every interior point using all wells within the
enclosed boundary,
Multi-zone solutions

The BEM described ﬁp to this point is capable of solving homo-
geneous groundwater problems. Many groundwater problems are, however,
far from homogeneous. Brebbia (1978) and several others have discussed
methods of analyzing non-homogeneous media using the BEM. Their approach
has been to divide the media up into zones of differing characteristics.
In the case of groundwater flow, these zones would differ as to their
hydraulic conductivity. The program GWBEM approaches non-homogeneous

problems in a similar manner. Figure 7 shows a two zone system with a

shared boundary,

Common boundary (interior)

Exterior boundary

Figure 7. Example problem with two zones of differing conductivities with
common interior boundary showing zonal node numbering
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The shared boundary between the two zones is designated as an inte-
rior boundary while the unshared boundaries for each zone are denoted as
exterior boundaries. Each zone is treated as a separate domain whose
boundary is discretized and integrated. Each zone is then coupled to the
other zones to form one system of equations using the equilibrium and
compatibility conditions across shared zone boundaries.

Unfortunately, to maintain the advantages of the BEM over other
analytical techniques, each of the different zones must be homogeneous
within themselves. If any zones are non-homogeneous, then integration
must be performed over the entire domain for each non-homogeneous zone
rather than just over their boundaries. A problem may have as many
connected zones as desired, but each zone must be uniform throughout.
Although simple. in theory, the actual computer implementation of the BEM
for multi-zone problems was found to be a formidable task for a number of
reasons.

First, in solving for a single zone system with the BEM discussed
up to this point, there are as many boundafy equations as boundary
unknowns. However, with multi-zones sharing common boundaries, as in
Figure 7, there are two unknowns for every point on the interior bound-
ary, namely ¢ and &'. If the boundary for each zone is integrated in the
normal fashion, there will be more unknowns than equations because each
node on the interior boundary will serve as base point once for each zomne
even though there are two unknowns associated with that node.

To resolve this situation, what is usually done is to apply the

equilibrium and continuity conditions for potential and normal flow at
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the interior boundary nodes. Liggett and Liu’s (1983) application of
these conditions generates two additional equations for each interior
node, one for potential compatibility and another for normal flow
equilibrium. This creates a solvable system, but at the cost of generat-
ing a larger system of equations. Since GWBEM is intended for micro-
computer use where memory is at a premium, the use of another method was
preferable. An approach explored by Brebbia and Chang (1985) was
therefore utilized in GWBEM.

System assembly In their method, the compatibility and equi-
librium equations are accounted for by condensing the system equations
during assembly. This involves having fixed columns in the system of
equations for each shared unknown boundary DOF and having the integral
coefficients K® accumulate in those fixed columns for each adjacent zone
during the matrix assembly. The conditions for equilibrium and compat-
ibility are utilized at this point, depending upon the type DOF being
operated on.

Figure 8 shows the system matrix for the simple two zone system of
Figure 7. As an example, node 5 of zone 1 is the same as node 2 of zone
2. By the use of the compatibility condition, the integral coefficients
from each zone for the & DOF at this shared node are placed into the
system matrix in column 5 after being multiplied by that zone's conduct-
ivity. The row each set of integral coefficients is placed into depends
upon the base point and zone which is being integrated. By the use of
the equilibrium condition, the integral coefficients for the &' DOF at

this node are placed in column 6. Since the normal flow out of zone 1 is
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Figure 8. Assembly of system matrix for simple two zone system with
shared boundary

the same as the normal flow into zone 2 at this common node, the sign of
the integral coefficients placed into column 6 from zone 1 is opposite
that of zone 2. In other words, one of the two zones has a multiplier of
-1 applied to its integral coefficients for the flow DOFs at the common
interior nodes. The resulting system matrix then has a row for every

base point in each zone and a column for each boundary DOF. This system

is now in solvable form.

Discontinuous elements Unfortunately, the problem of assembling

multi-zone systems 1s not the only obstacle to solving them. Another
problem occurs during the calculation of the unknown flow values on
interior boundaries. When the intersection of two interior boundary

elements form a straight line at a common node as in the upper half of

A an v i = i At S ot e
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Figure 9. Normal flow at element intersection

_Figure 9, the normal flow component at that node is the same on either

side of the node. On the other hand, if the elements meet aﬁd form a
corner as in the lower half of Figure 9, the normal flow components are
not the same on either side of the common node for each zone. The normal
flow component at the corner is actually not defined. This same problem
of ambiguous normal flow also occurs when two I'; boundary elements meet
at a corner on an external boundary.

These types of element intersections at corners develop problems
during the boundary integration and system assembly. Normally, the
integral coefficients from the leading and trailing elements for the flow
DOF at a node (Ky) are placed in the same column of the system matrix
because they represent the same flow DOF. However, with a corner node,

these coefficients from the leading and trailing elements cannot be
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placed into the same DOF, or column, of the system matrix because they
actually represent different flow DOF. One could lump the coefficients
from each side of the node into one DOF, but this creates significant

numerical errors in the vicinity of the corner (Patterson and Sheikh,

1981).

Normal flow

Zone 1
across boundary

zone 3

/
/ Boundary integration

Figure 10. Junction of three zones meeting at common node and normal flows
across zone boundary

Figure 10 shows another problem which is encountered during the
assembly of multi-zone systems. When several zones meet at a common .
node, the normal flow for the junction node is not defined nor is it
equal as one moves along the boundary of any zone and across the junction
node. The assembly of the flow integral coefficients for each zomne is
also made more difficult by now having to determine which flow DOFs match
across zone boundaries. A similar situation exists when moving from an

exterior zone boundary to an interior boundary or vice versa. The normal
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flow at the junction node can be defined for several different directions

at once.

¥ == ¥ Continuous

—
o—¥———¥——o Fully discontinuous

—_
o—¥ % Partially discontinuous
(Leading)
—
¥ X—o Partially discontinuous
(Trailing)

¢ Geometric node
¥ DOF node

—& Direction of integration

Figure 11. Continuous and discontinuous two-node linear elements

Several methods were evaluated to resolve this problem of ambiguous
normal flow at a boundary corner. The method implemented in GWBEM was
that of Patterson and Sheikh (1984), which make use of discontinuous
elements. A discontinuous element is defined as one where the geometric
nodes defining the end points of an element and DOF nodes defining the
boundary values do not coincide. Figure 11 shows different types of
discontinuous linear elements and compares them with a continuous linear
element. These elements allow for the normal boundary flow to be discon-
tinuous across an element intersection, something which continuous

elements do not allow. A discontinuous element, then, solves the problem
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of ambiguous flow at a cormer, but with a price. Because of the extra
DOF needed to define them, their use requires another equation for each
discontinuous element in a boundary. Also, the linear shape functions
used to define the behavior of the boundary values for each element must
be modified to accommodate the new interior location of the DOF nodes for
the element.

Patterson and Sheikh present linear shape functions for fully
discontinuous and partially discontinuous elements. Unfortunately, their
development is couched in terms of normalized natural element coor-
dinates, which is different then the coordinate system discussed pre-
viously for Figure 5. Normalized element coordinates have the origin at
the center of the element and the end nodes at * 1. This type of
coordinate system lends itself very well to numerical integration
routines. GWBEM, however, uses analytical integrations and unnormalized
element coordinates. The shape functions provided by Patterson and
Sheikh had to be modified for use in GWBEM. After performing a coor-
dinate transformation on the shape functions of Patterson and Sheikh and
then substituting these transformed shape functions into Equation 21, new
K terms for Equation 22 were found for each of the three types of discon-
tinuous elements from Figure 11. These are seen in Equation 36.

The I; and I, terms for these equations are the same as those
defined in Equations 30 and 32. The L is the element length. The use of
these new integral coefficients for discontinuous elements arises when
elements are adjacent to flow ambiguities, i.e., corners or junctions.

If an element has an ambiguous flow DOF at only one of its nodes, then it
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becomes a partially discontinuous element depending upon which end the
indefinite node is on, and the proper XK coefficients are then substituted
for the regular ones used during matrix assembly. If both element nodes
are ambiguous, then the element becomes fully discontinuous. During the
boundary integration, the DOF nodes become the base (collocation) points
rather than the geometric nodes, as is the case for continuous elements.
The limits of integration used in all of the integral equations for each

element are still based on the element end points, however.

(Fully discontinuous element)

2

Mg,

['L 11 ij
2

2
= [-§1y+ (L5 + 28722 3 TTa1" G+ Lej Z90!

(Leading discontinuous element)
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- 550+ G+ 326 112 3 3EF T G+ 36 ! (36)
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(Trailing discontinuous element)
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Model input

A great amount of effort was devoted to make GWBEM as easy as
possible to use, particularly for those unfamiliar with the BEM. This

involved keeping the data input to a ninimum while allowing for an
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adequate problem description. An attempt was also made to keep the
output from the program as concise yet meaningful as possible. The

program’s utility as a tool in understanding groundwater flow becomes

‘most apparent in a learning environment, as the normally cumbersome

details of defining a problem for computer solution are performed by the
program itself rather than by the user. This is in contrast to finite
difference and finite element models where the entire domain requires
discretization and where special techniques are often required, as in
modeling the flow in the vicinity of a well. GWBEM frees the user to
concentrate on the details of the results rather than the details of the
input.

Several different methods of describing the geometry and connect-
ivity of a multi-zone groundwater problem for GWBEM were tested in terms
of ease of input and programming. The ultimate method used by GWBEM was
developed from one advanced by Rudolphi (1988). The method consists of
two tiers, a global tier and a local, or zone tier. All nodes and
elements which define a problem boundary for all zones are specified on
the global tier. At this level, the coordinates of all nodes making up
the boundary are input and a unique global node number is assigned to
each boundary node. The elements are defined by specifying which global
nodes correspond to the end nodes of each element and which type of
boundary is found at each element, either Iy, Ty, or interior. Each
element is also given a unique global element number. There is an
implied direction for each element which comes from the order in which

the global nodes for each element are specified. If an element is
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defined as having global nodes 5 and 6 as end points in that order, then
the implied direction for that element is from global node 5 to node 6.

Once all of the boundary nodes and elements are defined globally,
the problem definition moves to the local, or zone level. At this level,
the elements which make up each zone boundary are input. An ordered list
is generated for each zone. This list contains the global element
numbers defining a zone boundary. The order of the elemenﬁs matches the
order the elements come in as one movés around each zone boundary. Any
element may be the starting point for the 1ist as long as the succeeding
elements are listed in order around the boundary. The sign on each
element number in a zone list compares the relative direction of the
clockwise integration around the zone boundary with the implied direction
for each global element. If the direction of integration and the implied
element direction are the same, then.the sign on the global élement for
that zone list is positive. If the directions are opposite, then the
sign on the global element is negative. This scheme provides the
simplest means of describing a problem geometry as well as accounting for
any connectivity between zones. By using global elements, any shared
boundaries are easily identified in the computer program.

Other problem characteristics are also defined at the zone level.
These include the hydraulic conductivity of each zone, the location and
type of any wells contained in a zone, and the location of any interior

points where the solution is desired. An example input listing for GWBEM

may be found in Appendix B.

....... —t 4 oA 1 TR AL
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Model output
The input and output for the model is file based. This allows for

the modification of output using any text editor and eases the importa-
tion of the model output into other analysis programs such as spread-
sheets or contouring programs. It has been the author’s experience that
programs which prevent this type of modification to their output to be of
limited use.

The output from the model consists of several blocks. The main
output block is made up of several distinct sections. The first section
is a formatted form of the input is repeated to allow for a check of the
data. Following this, the boundary of each zone is traversed element by
element. For each element, the coordinates and solution at the end nodes
is listed. After the boundary node solutions are given, the solution at
interior nodes for each zone is written. This information includes the
local zone numbering of each interior node and the potential and flow
vector values in the local x and y directions. All of this output block
may be directed to either a printer or a disk file.

Other output blocks are contained in text files. These include a
listing of the system matrix generated during the boundary integration
and separate files for the potential and flow values in the x and y
directions at all interior nodes. Only the potential values for the
boundary nodes are output in these files.

ode u

All of the routines and data structures used in the model GWBEM are

unique and have been tailored to allow the most efficient use of the
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micro-computer enviromment. This was done with a mix of fixed and
dynamic data structures. The model makes extensive use of linked lists
and virtual disk arrays. Model size is therefore limited mostly by
available disk space, although with the advent of large mass storage
devices, this constraint will become less significant in the future.
Currently, the model is capable of running problems with approximately
4000 boundary nodes and 1400 boundary elements on a machine equipped with
640K of core memory, although future improvements in micro-computer
operating systems and operating speeds could increase this amount
dramatically.

Manually determining which elements are discontinuous and which
type of discontinuous element an element should be becomes a cumbersome
task for large, multi-zone systems. The process usually is to analyze
the problem boundary and manually designate each discontinuous element.
Once the discontinuous elements are selected, several things must be done
to each. First, the boundary values normally defined for each element
end point must be altered to reflect the position of the new DOFs on the
interior of the element. Then each new DOF must be included in the
boundary integration. The assignment of the proper DOFs during the
assembly process becomes very complex as the number of boundary nodes and
the number of zones increase for a given problem. This process takes a
large amount of time and is a source of considerable error during problem
input.

One significant feature of the model is found in the routine Prep

System of the unit B7PREP.PAS. This routine automatically checks each

O
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zone boundary and determines which elements require conversion to
discontinuous elements. It decides which type of discontinuous element
should be used in each case, calculates the new boundary values at any
interior DOFs assuming linear behavior, and assigns a proper DOF number
for correct assembly of the system equations. This provides for more
fool-proof use of the model for multi-zone systems which would otherwise

provide many difficulties to a BEM neophyte.
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MODEL VERIFICATION

Test cases from several sources were used to verify GWBEM. These
included simple problems where the analytical solutions were available
and more complex problems where the FDM and FEM were used. Also, the
results of problems solved using other models based on the BEM were
comparéd with those from GWBEM. In each case, the results obtained using
GWBEM were of equal or better quality than those from other methods or
models when compared with theoretical results. Each of the test cases
was run on an 8 MHz IBM AT compatible computer with 640K of memory, a
math coprocessor, and a 32 megabyte hard disk. The time required to run
the test cases is given for each.

The first test case used to verify the model GWBEM is shown in
Figure 12. Several BEM researchers have used this simple problem as a
measure of the accuracy of their particular BEM models; Mitra and Ingber
(1987), Patterson and Sheikh (1984), and Brebbia (1978) to name a few.
To carry on in this ritual, GWBEM was also applied to this problem.
Brebbia’s initial solution was greatly improved by the use of double
nodes at the cormers. Mitra and Ingber'’s solution used extra collocation
points at the corners to resolve flow ambiguities there. Patterson and
Sheikh's solution used their discontinuous elements, the same type of
elements used in special cases by GWBEM. Interestingly enough, due to
the way GWBEM defines a problem, this simple test case did not require
the use of double nodes, extra collocation points, or discontinuous
elements by GWBEM to obtain a solution. The solutions from all sources

used the same boundary discretization of twelve elements.
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Figure 12: Test case 1 - Simple flow problem thru a rectangular prism
(after Brebbia, 1978)
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Figure 13: Comparison of numerical solution of test case 1 by various
authors to that of GWBEM
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Figure 13 compares the results obtained from each source. GWBEM
provided better results than either Brebbia or Patterson and Sheikh, and
comparable results to those of Mitra and Ingber. Mitra and Ingber’s
method involved extra collocation points at the corners, which resulted
in a larger system to be solved than that generated by GWBEM. These
extra collocation points are required to be outside of the problem domain
and generate an extra equation for each extra point used. Also, good
results using this method are very dependent upon the proper placement of
these extra points, something which would be difficult to do in an
automated fashion as was desired with GWBEM. Although the test case was
small, if a larger problem were used, GWBEM would use a significantly
less amount of computer memory than Mitra and Ingber'’s method for
presumably similar results. The total time required to solve this
problem was 2.7 seconds. Test case 1 was also solved by GWBEM using only
4 elements, or one element per side. The results were identical to those
obtained from the twelve element discretization and matched the
theoretical values exactly.

For this problem, the main difference between GWBEM and the other
researchers’ models is in the approach to the boundary unknowns at the
corners. In the other methods, it was assumed that there were ambiguous
flow definitions at the corners which resulted in two corner flow
unknowns. What GWBEM does is account not only for the geometry at the
corners but also the boundary conditions. For the sample problem, since
the flow is known to one side of every corner node and since the

potential is also defined at each corner node, there is in fact one
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unknown flow DOF at each corner. The system is assembled using this fact
to produce an unknown vector which contains only those unknown flow DOFs
at the corners.

Test case 1 showed the validity of GWBEM in providing boundary
solutions for a simple flow problem. Larger, more complex test cases
with different boundary conditions were used to further test GWBEM.
Franke and Reilly (1987) tested the effects of applying different sets of
boundary conditions to a groundwater flow system. The different flow
systems are shown in Figure 14. System 1 has a constant head boundary
specified at both ends of the domain, while the head along the upper and
lower boundaries are specified as a linear variation from the left
boundary to the right boundary. System 2 again has the left and right
boundaries specified as constant head, while the upper and lower
boundaries are specified as no flow béundaries. System 3 differs from
system 2 in that the left boundary is a specified flow rather than a
specified head boundary. These three boundary condition systems were
analyzed by Franke and Reilly in three different experiments for a total
of nine cases. Experiment A used a K of 2.0 ft/day, experiment B used a
K of 4.0 ft/day, and experiment C used a XK of 2.0 ft/day but with a
discharge well located in the center of the domain. The flow rate of
this well was 100 ft3/day. In all cases, the flow was assumed confined
and the medium was assumed to be isotropic and homogeneous. In all
systems, the domain was 20 feet long and 8 feet wide.

Franke and Reilly used a finite-difference, square point-centered

mesh with 81 X 33 nodes to solve the three groundwater systems, a total

o et nn
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Figure 14: Three different flow systems investigated by Franke and Reilly
(1987)

of 2673 nodes. To actually solve for the unknown boundary values using
GWBEM, a total of 28 boundary nodes were spaced equally around the
boundary every 2 feet. Sixty interior nodes were used to determine
behavior of potential and flow in the interior with GWBEM. Including the
well node for the C experiments, the total number of nodes required by
GWBEM to obtain results of similar accuracy to those of Franke and Reilly
was 89. Comparing the number of nodes required to adequately model the

flow systems using the two methods (2673 versus 89) shows that GWBEM
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requires much less input than the finite-difference model used by Franke
and Reilly. It took an average of 19.3 seconds to solve for all of the
boundary and interior nodes for these problems on the test computer.

The results obtained from GWBEM for the nine cases are shown in
Figures 15 thru 23. These figures show the potential surfaces calculated
from the boundary and interior nodes and the flow vector calculated for
each interior node. In each figure the direction for the flow vectors is
from the asterisks to the triangles. The asterisks mark the location of
the nodes used to calculate the interior values. The flow vectors in
each plot are normalized so that the plots’ maximum flow vectors are no
longer than one tenth of the longest side of the flow domain. Based on
the units of the problem, the units on the maximum flow vector shown at
the top of esach solution plot is feet/day. All other flow vectors are
scaled accordingly. The value represented by the longest flow vector is
given at the top of each figure. The potential value at each well is
also listed in each of the figures for the C experiments.

The potential surfaces shown in Figﬁres 15 thru 23 compared very
closely with those of Franke and Reilly. Direct comparison of the actual
numerical results was limited to certain potential and flow values on the
boundary and the heads at the wells in the C experiments, as these were
the only ones provided by Franke and Reilly. The direct comparisons
. which could be made are listed in Table 3. Another check on the validity
of the results come from a simple mass balance of each. All cases for
flow systems A and B balanced exactly as to inflow and outflow. The

worst flow imbalance was found for the C flow systems and was 0.8
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Table 3: Comparison of GWBEM and Franke and Reilly results

Exp.8 Head Inflow Head Inflow Inflow  Head
No. K (ft/d) Left Left Right Right Top/Bot. Well
FRAL 2 100.0°¢ 80.0 b b b

GWAL 2 100.0¢ 80.0 0.0 -80.0 0.0
% Diff 0.0

FRA2 2 100.0° 80.0 b b b

GWA2 2 100.0¢ 80.0 0.0 -80.0 0.0°
& Diff 0.0

FRA3 2 100.0 80.0° b b b

GWA3 2 100.0 80.0C 0.0 -80.0 0.0¢
% Diff 0.0

FRB1 4 100.0¢  160.0 b b b

GWB1 4 100.0¢  160.0 0.0 -160.0 0.0
% Diff 0.0

FRB2 4 100.0¢  160.0 b b b

GWB2 4 100.0¢  160.0 0.0 -160.0 0.0°
% Diff 0.0

FRB3 4 50.0 80.0° b b b

GWB3 4 50.0 80.0¢ 0.0 -80.0 0.0¢
% Diff 0.0

FRC1 2 100.0°¢ 82.5 b -77.5 95.0 13.04
Gucl 2 100.0¢ 82.7 0.0 -77.32 95.42  13.2
% Diff 0.24 -0.23 0.44 1.5
FRC2 2 100.0¢  130.0 b -30.0 b -7. 4
GWC2 2 100.0°  130.07 0.0 -29.93 0.0° -6.9
% Diff 0.06 -0.25 1.4
FRC3 2 3g, d 80.0° b 20.0 b -3g. @
GWC3 2 37.4 80.0° 0.0 20.15 0.0 -38.1
% Diff 1.6 0.74 0.26

a FRxx - Franke and Reilly results, GWxx - GWBEM results,
b not provided by Franke and Reilly.

c specified conditions.

d specified as approximate values by Franke and Reilly.
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Figure 15: GWBEM results of USGS test case Al, K = 2
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Figure 16: GWBEM results of USGS test case A2, K= 2
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Figure 17: GWBEM results of USGS test case A3, K = 2
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Figure 20:

GWBEM results of USGS test case B3, K = 4
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Figure 18: GWBEM results of USGS test case Bl, K = &4
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Figure 19: GWBEM results of USGS test case B2, K = 4
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Figure 21: GWBEM results of USGS test case Cl, K = 2
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Figure 22: GWBEM results of USGS test case C2, K = 2
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Figure 23: GWBEM results of USGS test case C3, K = 2
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percent. The Cl experiment had a total calculated inflow of 100.8 cfs/day
balanced against a specified well outflow of 100.0 cfs/day.

The interior flow vectors were calculated with GWBEM only, so that
no direct comparison of the interior flow behavior could be made with the
results of Franke and Reilly.' However, the flow vectors found using
GWBEM agree with the expected flow determined from the potential
contours calculated with GWBEM. Overall, the numerical results which
could be compared were identical. The C experiments were slightly
different between sets, with the maximum difference being 1.5 percent.
Many of the values provided by Franke and Reilly found in Table 3 were
given as approximate only. The percent differences for these values are

approximate and for rough comparison only.

Table 4: Comparison of drawdown results for different well flow rates for
C experiments

Drawdown
(£t)
Well discharge
(££3/4)
Flow system Flow system Flow system

1 2 3
FR 1 0.37 0.57 8
GW 0.37 0.57 0.88
FR 10 3.7 5.7 8.8
GW 3.7 5.7 8.8
FR 100 37 57 88
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Franke and Reilly ran another set of experiments based on the C
experiments. In this set, they altered the flow rate of the well to
determine what effects this had on the calculated drawdown at the well.
These cases were also analyzed using GWBEM and the results are compared
in Table 4. As can be seen, for the number of significant digits
provided by Franke and Reilly, the results were identical.

Several different test cases were run to test the validity of GWBEM
with multi-zone systems. The first test case run was a simple three zone
system shown in Figure 24. The results from GWBEM are compared against
theoretical values from Bolteus and Tullberg (1985) in Figure 25. They
solved for the theoretical temperature profile using a one-dimensional
system of equations. As can be seen in the figure, the results from
GWBEM compared very well with the theoretical ones. The number of nodes

used to model this problem with GWBEM was 11 nodes along the top and

[Jx =1.75 Bc-01

0.1 0.1

Figure 24: Simple multi-zone system
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Figure 25: Comparison of theoretical and calculated results of simple
multi-zone system

bottom and 10 nodes along each side and along the interior boundaries.
The run time for this problem was 63 seconds.

Another multi-zone system presented by Brebbia and Chang (1985) was
analyzed using GWBEM. This system is shown in Figure 26. ‘It consists of
three zones under a dam with sheet piles. Zones were used to aid in the
modeling of the sheet piles, which was done by the use of special
elements along the interior boundaries between the zones. These special
elements had the flux across them set equal to zero, so that the poten-
tial was the only unknown. Brebbia and Chang used both a BEM model using
72 constant value boundary elements and an FEM model with 68 nodes and 95
elements. The system was solved with GWBEM using 96 global nodes with 72

global linear elements in approximately 3.7 minutes. The potential




68

94 n ¥
il Dam v 68 m
64
60~
43- Cutoff walls
Zone 1 Zone 3
Zone 2

K for all zones = 0.03048 m/min
Figure 26: Three zone system with cutoff walls (Brebbia and Chang, 1985)
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Figure 27: Potential values and flow vectors of three zone sheet pile dam
problem calculated using GWBEM

contours and flow vectors from GWBEM for this problem are shown in
Figure 27. This figure agreed very closely with that of Brebbia and

Chang and the flow patterns are realistic for such a system.
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Figure 28 compares the pressure head on the base of the dam as
calculated with GWBEM and the constant element BEM model of Brebbia and

Chang. As seen in the figure, the curvilinear behavior of the pressure
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Figure 28: Comparison of GWBEM and Brebbia and Chang (1985) calculated
heads under base of dam

distribution under the dam was properly simulated by GWBEM and verified
by the Brebbia and Chang solution. Here is a case where the number of
elements used to define a boundary was critical for the proper solution.
If too few linear elements had been used, the curvilinear behavior of the
pressure distribution beneath the dam would not have been suitably
established. Conversely, to more precisely determine the pressure
distribution, more linear elements could have been used along the

boundary beneath the dam. More research is needed to establish how many
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elements would be needed to allow for the most efficient, yet accurate,
solution for a given problem.

A final problem was used to further validate the numerical solu-
tions found using GWBEM as well as to provide a test of the solution of
problems with multiple wells in a domain. The problem consisted of a
sub-irrigation system with an inflow and an outflow tile and a specified
evaporation rate along the top boundary. An analytical solution to the
problem had been worked out by Kirkham and Horton (1989) and agreed with
the numerical results obtained from GWBEM. Several of the more exacting
details of the problem solution compared very well between the analytical
and numerical methods, and further validated both. Unfortunately, the
results of the analytical solution had not been officially published at
the time of this writing. To protect the interests of the authors of the
analytical solution, neither the numerical nor the analytical results
will be included. What is important, however, is that GWBEM properly

solved the problem with a relatively small amount of effort,

Conclusions
The utilization of GWBEM to the various groundwater problems
discussed here show the program to be a viable analysis tool for many
groundwater flow situations. Its ability to calculate system response
for multi-zone groundwater systems, flow systems with multiple wells,
cutoff walls, and interior flow velocities and potentials have been
verified. Given adequate discretization of a problem boundary, GWBEM has

also been shown to accurately simulate non-linear behavior using linear

elements.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The details of a simple yet effective boundary element model for
solving many groundwater flow problems involving non-homogeneous media
with wells have been presented. The micro-computer program GWBEM has
been shown to produce accurate results with a modest amount of user
input, especially true when compared with the input requirements of other
numerical techniques such as the finite-element and finite-difference
methods.,

The details furnished by the program listing provide a good founda-
tion for the development of more advanced groundwater models along with
information concerning the actual implementation of the BEM on computers.
Unlike other numerical methods such as the FDM and FEM, such information
was sorely lacking in the literature, at least at the outset of the model
development. The use of Pascal, which is knqwn for its readability and
structured constructs, makes for relatively easy understanding and
modification, as well as portability between different machines.

Several problems encountered with the application of the BEM, such
as the coupling and assembly of multi-zone systems and the solution of
ambiguous corners on a boundary have been dealt with and implemented in
the model for an overall improvement of the method. An analytical
integration scheme for linear elements which avoids the potential errors
due to numerical integration has been used throughout the program,
including the implementation of discontinuous elements. The use of

higher order elements would necessitate numerical integration schemes,
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but the use of such elements is of questionable value considering the
quality of most groundwater data.

Many of the more tedious details concerning the use of the BEM have
been automated in the model, particularly those involving the numbering
of nodal DOFs, use of discontinuous elements, and zonal connectivity.
Through the use of dynamic memory structures and virtual arrays, large
problems may be solved on machines with small core memory with little
sacrifice in speed. The result is a simple to use model which frees the
user to focus on the problem being modeled rather than the intricacies of

the model used to solve the problem.

Recommendations

Several improvements could be made to the model in its current
form. The most notable improvement would be the ability to solve for
unsteady flow problems. Most approaches to solving these problems with
the BEM require integration over the entire domain. This requirement
diminishes one of the main advantages of the BEM, namely the reduction of
a problem’s dimension. Several researchers have proposed methods to move
the domain integration to the boundary thereby maintaining an advantage
of the BEM, but these methods are currently not implemented in this
model.

The ability to model unsaturated flow would be valuable, but
because of the variable conductivity which occurs with such flow, many
problems would be encountered with a BEM solution. Further research is
required. The application of the BEM to ephemeral stream-aquifer

interaction would be useful, particularly during the transition from a
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connected stream to a disconnected one. A mechanism for the determina-
tion of state of the stream-aquifer connection would increase the model

utility considerably.
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pr:;zm GWBEM;

Progrem GWBEM - Main module

A ganersl purpose groundwater modsel based on the boun-

dery element method., Cepsble of solving two-

dimensional, steady-state problems. Non-homogeneous
domeins deslt with by defining multiple zonss of dif-

fering but homogeneous hydraulic conductivities.

allows for the inclusion of wells as point sourcss of

sinks, with either specified head or drewdown. Cutoff

walls accommodated by use of special slements.

Copyright (c) 1989, Mark A. Liebe and Iows State
University

ALL RIGHTS RESERVED

This program is intended for non-ccmmercial use only,
and may not be used for any other purposs without the
expressed written conssnt of the author and Iowa State

University.
Lsngusge: Turbo Pascal V5.0,
Last modified : 4/15/89

Uses Crt,
B7DEF,
B7File,
B7Utils,
B7Prep,
B7Int,
B7Solver,
B7Error;

Procedure Initislize_Boundary_Arrays;
vsr Zone : byte;
BEGIN
New(GNode);
Fillchar(GNode",Sizeof(GNode"),0);
New(GElem);
Fillohar(GElem",Sizeof(GElem"),0);
FillChar(ZoneD, sizeof(ZoneD),0);
New(NodeF);
Fillchar(NodeF",Sizeof(NodeF"),0);
for Zone := 1 to Max_Zones do
with ZoneD{Zone] do
begin
Elements := nil;
Wslls := nil;
IntNodes := nil;
TempElList := nil;
ond;
END;

procedure writeGridFile;
{- prints out solution grid files for contouring )}
var
Phitile,
DPXfile,
DPYfile : text;
PhiFileNsme,
DPXFileName,
DPYFileName: string(30];
begin
{ write out phi solution }
PHIFileNsme := ForceExtension(OutFileName,'PRI');
assign(PHIFile, PHIFileName);
rewrite(PHIFile);

For J := 1 To Num_INodes do Writeln(FhiFile,INode"(J].X:9:4,
INode*([J]).Y:9

.
H
.
H

4,

’
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INode”™[J).Phi:0:4);
For J := 1 To Num_BNodee do Writeln(PhiFile, llodo“(dl X:9:4,0 *,
BNode"[J].Y:0:4,’ *,
BNode"(J).Phi:8:4);
For J := 1 To Num_SNodee do Hutnln(l'hinlo SNodo 1J] . X:9:4,° *,
ode”[J].Y:9:4,* *,
SI!odo [J).Head:8:4);
Close(PHIFile);
if Num_INodes > 0 then
begin

DPXFileName :=~ ForceExtension(QutFileName,’DPFX’');

DPYFileNsme := ForceExtension(OutFileName,'DPY’);

assign(DPXPile, DPXFilsNeme);

rowritea(DPXFPile);

sesign(DEYFPile, DFYFileName);

rewrite(DPYFile);

{ write out DPhiX solution )

For J := 1 To Num_INodes do Writeln(DPXfile,INode"([J]).X:9:4,’ ',
INode™([J).Y:9:4,’ *,
(=INode"[J].DPhiX*Conductivity):9:4);

{ write out DPhiY solution }

For J := 1 To Num_INodea do Writeln(DPYfile,INode"[J]).X:9:4,' ’,
INode"(J].Y:9:4,’ ’,
(-INode"[J]. DPhtY*Conducuvit.y) 9:4);

Close(DFXFIle);
Close(DPYFile);

and;
ond; { of WritegridSol }

procedure Solve_System;
{- oells virtuel erray solver }
ver Condition Num : float;
begin
if not Solver(DOFCount, N, F, Condition_Num) then
ShowError(’System Singuler’, True);
writeln(OutFile, * **#>>> CONDITION NUMBER : ’,Condition_Num);
ond; { proc Solve_System }

{====>>>Main<<< }
begin
Clreocr;
HandleInputPerams;
Open_Text_file(Infile, Infilensme, Rd);
Opm Toxt_| _File(OutFile, Outfilename, Wrt);
Initielize _Boundery_erreys;
StertTimer(’Getting date from input file’);
Get_Data;
St.opumor('nt deta from input file’);
StertTimer(’Preparing systsm for integretion’);
Prep_System;
StopTimer('prepare system for integration’);

{ Solve for unknown boundery conditions }
StertTimer( 'Int.unun; boundary equetions’);
Integrate_Boundary

StopTimer(’ mt.uut.o boundary equstions’);

Solve_System;

PlaceSolution;

WritsBounderySolution;

WriteSourceSolution;

{ Solve for interior unknowms }
StertTimer(’'Integrating for interior node solutions’);
Integrate_Interior;

StopTimer(’integrate for interior node solutions’);
WriteInteriorSolution;

DisposeWorkArrays(True);

WriteGridFile;

Close(Infile);

Close(Outfile);
end. { of Program GWBEM SHWAAWARWAARARRAAEAARAARAANNCS }

ODONALBIPWN
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Program GWBEM ~ Unit B7DEF

Contains globsl varisble definitione and types for
GWBEM

Copyright (c) 1089, Mark A. Lieba and Iowa State

University

ALL RIGHTS RESERVED

TPRArray snd

TPVArray units copywrite (o) 1987 by

TarboPower Software. Part of Turbo Profeesional

Programmer’a

Toolbox VA.0. For information, contact:

TurboPowar Softwars

3109 Scotte Vallay Drive, Suite 122
Scotte Valley, CA 95088

(408) 438-8808

laet modified : 12/12/88 11:14 AM

interface

usss TFRArray,
TFVArrey;

Const Max BNodas = 4000;
Mex_Elements = 1400;

Max_Zonas
ZeroTol =

Type

= 20;
5.0e-8;

Float = double;
Coordinate = aingle;
Direction = (x,y);
GlobalDOF = word;
NodeNumbar = word;

ElementNumber = integer; { want to be +/- here }
NodeType = (Boundary,
Interior,
Source);
BNodeType = (Phi, dPhi, Intr, Well); { initial node assignments )}
ElementSFType = (Reg, { regular element shape function }
Disc, { full discontinuous elsment shepe function }
LDisc, { discontinuous leading element shape func )

TDisc); { discontinuous treiling element shepe func )

CoordinatePair = arrayldirection] of Coordinate;

CoordPtr -
CoordList =
NodeFlags =
Flagliast -

ElemantNode =

ElementIype =

ElementPtr =
ElementList =

TempNode = recoxrd { record for nodal vslues of temp element list for each zona }

“CoordList;

arrey(l, .Max_BNodes) of CoordinatePair;
“Flaglist;

array(l, .Max_BNodes]) of Boolean;

record
Node : NodeNumber;
Dof : GlobalDof;
Fhi, DPhi : float;
NType : BNodeType;

end;

record { record setup for elements -~ linear for now)
A,B : ElemantNode;
E1SFType : ElsmentSFlype;

end;

“ElsmentList;

array([l, .Max_Elements] of ElementType;

OCONARNIWN -
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Coord : CoordinatsPair;
KnownVal : float;
end;

TempEL = recoxd
A, B : TempNode;
ElTyps : BNodalyps;
ond;

SNodeType = (SFlow, SHead):

SourcsNoda = rscord { sourca node rscoxd )}
Coord : CoordinatePair;
Dof : GlobalDof;

Radius,
Head,
Flow : float;
SourceTyps : SNodsTyps;
end;
IntariorNoda = record { interior nods recoxd }

Coord : CoordinatePair;
Phi, DPhiX, DPhiY : float;
and;

ZoneRsc = record
Kx, Ky, TheteX : float;
NumElems, NumWells, NumInt, StartRow, NumDOFs : word;
Elements, { tpsrray of Element Numbars )
Wells, { tparray of Sourcenode }
IntNodes, { tparray of InteriorNods }
TexpElLiat:{ tparray of TempElemente }
TPRArray .TpArray; { RAM based dynamic arrays )}

ond;
ZoneList -'uuytl..mx_knol] of ZonsRec;
File _Name = String(40);

File_Ext = atring(3);
Titlestring = String[80];

const BTypeStr :array[BNodeType) of string(4] = (‘Phi ’,’DPhi’,’'Intr’,’Wall’);

STypeStr :array(SHodeType) of stringl4) = (’Flow’,’Head’);

EL1SFlypeStr:array(ElementSFType] of string(5) = ('Reg ','Disc ’,
'LDisc’,’'IDisc’);

HMatExtStr : atring(3) = 'EMT’;

FVacExtStr : string(3] = 'FVC’;

var
GNode : CoordPtr; { RAM pointer array of globsl node coordinates )}
GElem : ElementPtr; { RAM pointer array of globsl element definitions }
ZoneD : ZoneList; { RAM arrsy of zone definitions )}
NodeF : NodeFlags; { RAM arrsy of node flags }
B : TPVArray.TPArray; { full matrices )
F
Rﬁs : TPVArray.TPArray; { vectors }
SinPsi,

CoSinPsi : float;

(I:onductivity : arrsy(l..Msx_Zones] of float;
’

J,

Zone,

Num_Zones,

Num_BNodes, { total global boundary nodes }

Num_Boundariss: word; { total master boundary elements }

DOFCount : GlobalDof; { Global DOF counter }

Title,

Parasml,

Param2 : atring([79];

NumParams : byte;

Outfile,

InFile : text;

InFileNems,

OQutFileNams : File_Name;

{
Implementation

OCRNAONIWN -
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begin 1
TPVArray.RangeCheck := True; 2
TPRArray.RangeCheck := True; 3,

end, ( Of unit BIDEP <Hwaanautantananantvdntanance } 4

5
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Un%t. B7Utils;

Program GWBEM - Unit B7UTILS
Contains miscallaneous routinass for use with GWBEM.

Copyright (c) 1989, Mark A, Liebe and Iowa State
Univeraity

ALL RIGHTS RESERVED

TPString, TPDoa, TPCrt, TPWindow units copywrite (c)
1987 by TurboPower Software. Part of Turbo Profea-

sional Programmer’a Toolbox V4.0. For informationm,

contact:

TurboPower Software

3109 Scotts Valley Drive, Suite 122
Scotts Valley, CA 95088

(408) 438-8808

last modified : 12/01/86 9:58 AM

interface

uses B7Def,
Tris;

procedure HandlelInputParams;
{- msnipulates input params and sets infile & outfile names }

function ATANZ ( ¥, X : float) : float;
{- Function which returns the properly sisned value of the angle given by }
{ the slope provided. Comparsble to the FORTRAN external ATAN2, 10/8/87 }

function radius(Xl, Y1, X2, ¥Y2: float) : float;
{- routine to calculate distsnces between given points }

Function Pow(Base,Exponent : float):float;
{- returns Bsse"Exponent )

procedure GetLocalCoords(Source, { Scurce point }
Fieldl, { Field Points }
Field2: CoordinatePair;
var Normal, Locall, Local2, SinPsi, CoSinPsi : flost);
{- routine to calculate local coordinates. Clockwise is + }

Function Krndlt(X, J : Integer): single;
{- Kronecker delta function for two indices }

Function WrapWord(MaxIndex: word; Index : word) : word;
{- returne word index wrapped properly given Maxindex }

function WrapEIndex(Index, TotslElems: ElementNumber) : ElementNumber;
{- returns proper index of element number if at either end of index list }

Procedure Sign(Var A, B : float);
{~ snelogous to FORTRAN sign routine }

Procedure GetAlpha(L, M, H: CoordinatePair; Var Alpha : float);
{~ returns value of angle subtended by line L-M-H )}

function CheckZeroFloat(value : float): float;
{~ zero’s out near zero values )}

procedure StartTimer(Message : TitleString);
{starts timer and write message to screen)

procedure StopTimer(Message : TitleString);
{stops timer and writes time elapsed & message to output file}

{ }
implementation
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uses TPString,
PDos,
TECrt,
TPWindow,
B7Error;

const MessageAttr = S1E;

Type Component = (1,3,k);
Vector = array(i..k] of float;

var StartTime, StopTime : longint;
MesAttr : hyte;
MesWindow : WindowPtr;

procedure HandlelnputParams;
{- manipulates input params and sets infile & outfile names )}
begin
Caae ParamCount of
0 : begin
Write(’Name of input file : ');
Readln(Infilename);
Writeln;
Write(’Neme of Output file : ’);
Readln(Outfileneae);
ond;
1 : begin
InFileNama := DefsultExtension(ParamStr(1),’'dat’);
OutFileName := ForceExtension(InFileName,’out’);
eond;
begin
inFileName := DefaultExtension(ParamStr(1),’'dat’);
OutFileName := ForceExtension(ParamStr(2),’out’);
ond;
ond;
end; { proc HandlsInputParams }

N

{~===>>>ATAN2, INC<<<
{ Function which returns the properly signed value of the angle given by
E the slope provided. Comparable to the FORTRAN externsl ATAN2, 10/8/87

o St ot gt

function ATAN2Z ( Y, X : float) : flost;
const Zero = 1,0E-8;

var flag : byte;
temp, sign : float;

begin
if abs(X) < Zero then X := 0.0;
if abs(Y) < Zero then

begin
Y := 0.0;
sign := 1.0;
end

else sign := Y/aba(Y);
if x = 0.0 then temp := (PI / 2) * sign
else
begin
temp := arctan(¥/x);
it Y <> 0.0 then
begin
if X < 0,0 then temp := PI * sign + temp;
end
else
if X < 0,0 then temp := PI;
end;
ATAN2 := temp;
end; { ATAN2 function }

{=»>>>Radius<<<
f Calculates the distance between two points in 2 dimensional space. 10/14/87;

function radius(Xi, Y1, X2, ¥2: float) : float;

{ routine to calculate distances between given points )}
var X Diff, Y Diff : float;

begin
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X _Diff := X2 - X1;

Y Diff := Y2 - Y1;

radius :m sqret( X_Diff * X _Diff + ¥Y_Diff + Y Diff);
end; { of radiua function )}

{==-=>>>Get1Coord, INC<<< }
{ Note : Assumas positive local direction is CLOCKWISE around boundsry }
E Modified 00/20/88. ;
procadure GetlocalCoords(Source, { Source point }

Fieldl, { Field Points )}

Field2: CoordinatePeir;
ver Normal, Locall, Local2, SinPsi, CoSinPsi : float);

{=- routine to calculete local coordinstes. Clockwise is + }
var Blement_Length : flost;
begin

Element_Length := redius(Field2{X),Field2(Y],Fieldi([X), Fieldi[Y]));

CoSinPai := (Field2(X) - Field1(X])/Element_Length;

SinPsi :» (Field2{Y] ~ Field1(Y))/Element Length;

Locall := (Fieldl[Y]) - Source[Y)) * SinPsi + (Fieldl(X] - Source(X]) * CoSinPsi;

Local2 := (Field2{Y) - Source(Y)) * SinPsi + (Field2[X] - Source[X]) * CoSinPsi;

Normal := Abs((Source(Y]-Fieldl(Y]) * CoSinPei - (Source(X) - Fieldi(X])) * SinPsi);
end; { GetLocalCoords }

Function Pow(Base,Exponent : float):float;
{- returns Bass“Exponent }
var aign : integer;

BEGIN
IF Exponent = 0,0 then Pow := 1.0
Else
begin
IF Bese = 0.0 then Pow := 0,0
ELSE
begin
sign := round(sbs(base)/bsase);
1’;‘ ’(.c:l.;n < 0) snd (Int(Exponent) <> Exponent) then
egin
write(’nice try - bad axpotentiation’);
Halt;
end;
base := abs(bsse);
Basas := Exp(Ln(Base) * Exponent);
Pow := sign * Base;
end;
end;
END;

Function Krndlt(l, J : Integer): single;

{- Kronecker delta function for two indices )}
begin

I£ I = J then Krndlt := 1.0

ELSE KrnDlt := 0.0;
End;

Function WrapWord (MexIndex: word; Index : word) : word;
b {- returns index wrapped properly given Maxindex }
agin

If Index > MaxIndex then WrapWord := 1

else

If Index < 1 then WrapWord := MexIndex

elae WrapWord := Index;
ond;

function WrapEIndex(Index, TotalElems: ElementNumber) : ElementNumber;

{- returns proper index of element number if at either end of index list }
begin

WrapEindex := Index;

if Index < 1 then WrapEIndex := TotalElems

else if Index > TotelElems then WrapEIndex := 1;
end;

Procedure Sign(Var A, B : float);

{- snalogous to FORTRAN sign routine )}
Begin

A := Aba(A);
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If£ B < 0.0 then A := - A;

End;

Function DotProduct(A, B: Vector): float;
{- returns DotProduct of vectors A & B }

Var Temp : float;
Comp : Component;
Begin
Temp := 0.0;

'emp := Temp + A{Comp] * B{Comp);

T
DotProduct := Temp;
End;
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Frocedura CroseProduct(A, B: Veotor; Var C : Vector);

{- zeturns crose product of vactors A& B in C )}

Var Comp : Component;
Begin

Cli] := A{J] * Bik] - B(J)

Cl3) := ~(A[1] * B{k] - B[4

Clk] := A[1] * B(J] - BI4i)

End;

Procedure GetAlphe(L, M, H: CoordinatePair; Var Alpha : float);

{

" A
]*
ﬁA[

k);
Atk));
3

{~ returns value of engle subtended by line L-M-BH )}

Var A, B, C : Vector;
Begin
Af1) := LIX) - M(X);
Al3] := LLY¥) - MLY);
Alk] := 0.0;
Bli] := BH(X) - M[X];
B(3) := H(Y) - M{Y]);
B(k] := 0.0;

Alpha ;= ArcCos(Dotproduct(A,B)/Sqrt(Dotproduct(A,A) * Dotproduct(B,B)));

CrossProduct(A,B,C);

If C(k] < 0.0 then Alphe := 2.0 * Pi - Alphs;

End;

function CheckZsroFloat(value : floet): float;
{- zero's out neer zaro values }

begin

if abs(Velua) < ZeroTol then CheckZeroFloat := 0.0
alee CheckZeroFloat := Vslue;

end; { func CheckZero }
procedure MakeMessageWin;

{~ puts up meseage window }

begin
HiddenCursor;

FrameChaze := ' |'|'|'l"'|';

if not MekeWindow(MeeWindow, S,14,75,18,True,True,False, MesAttr , MesAttr, , MesAttr, ')

then ErrorMem;

if Not DisplsyWindow(MesWindow) THEN ErroxMesm;

end; { proc ShowError )}

procedure ClearMessageWin;

.

{- dieposes of messege window )}

begin

if MesWindow <> nil then DisposeWindow(EraseTopWindow);

MesWindow := nil;
ond;

procedurs ShowMessage(Mes : TitleString);

{~ puts up Message window )

begin

FastWriteWindow(Center(Mes,69),2,1,MesAttr);

end; { proc ShowError }

procedure PrintMessage(Mss

TitleString);

{- writes messege to output file }

begin
writeln(Outfile);
writeln(Outfile ,Mes);
writeln(Outfile);

end; { proc printmessage }
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procedure StartTimer(Messege : TitleString);
{starts timer end writes messege to screen)
begin
HiddenCursor;
if MesWindow = nil then MskeMeesegeWin;
StartTime := TimeMs;
ShowMessage(Messagse);
end; ( proc StertTimer )

procedure StopTimer(Massege : TitleString);
b {etops timer snd writes time elepsed & messsge to ocutput file)
egin
StopTime := TimeMS;
PrintMessege('=w=> ‘+Form(’'f#é.#é#’ , (StopTime-StartTime)/1000.0) +
' seconds to '+ Messege + '<mmm’).
ClaarlMsssegeiin;
NormelCursor;
Clrser;
oend; { proc StopTimer }

begin
MspColore := True;
MesAttr := MapColor(MeseagsAttr);

MeaWindow := nil;
ond, { of Unit BIUTILS <H*wawaawsuananadditwwwdnwince }

DDNDLLSCWN -




90

Untt. B7Prep;

Program GWBEM - Unit B7PREP

Contains routines for sutocmatic generetion of global

DOFs and assignment of discontinuous slements for
tulti-gone flow system assexzbly.

Copyright (c) 19689, Mark A. Lisbe and Iowe Stats
University

ALL RIGHTS RESERVED

TPRArray, TPVArrey, and IPString units copywrite (o)
1987 by TurboPower Software. Part of Turbo Profas-
sionel Progremmer’s Toolbox V4.0. For information,

contact:

TurboPower Software

3109 Scotts Valley Drive, Suite 122
Scotts Velley, CA 05088

(408) 438-8808

lest modified : 12/01/88 9:48 AM

interfece

uses B7Def,
B7Utils,
TPRArrey,
TPVArray,
TPString,
TPArr,
B7Dats;

procsdurs Prep_System;

{~ main routine to Prep unit. Finds diecontinuous elemente and ID’s nodes }

procedure MekeElList(Zone : byte);

{- senerstes temp list of element coordinates and interpolated known bndy vals }

procedure ClearEllList(Zone : byte);

{- clears temp list of element coordinates and interpolated known bndy vals }

procedure DisposeWorkArraye(DeleteFila : Booleen);
{~ flushes end closes work erraye )}

procedure PlaceSolution;
{= places eystem results into proper DOF locations }

{
implementation

const

ElMultl = 0.25; { naturel coordinate locations within elements for }
ElMult2 = 0.75; { interior freedom DOF for discontinucus elements

var Zone : byte;
RowCount : word;
Node, Well : NodeNumber;
Element : ElementNumber;
CurrENum, FrevENum : ElementNumber;
CurrEl, PrevEl : ElementlIypas;

procadure DisposeWorkArraye(DeleteFile : Boolean);
{- flushes end closes work arrays }
begin
TPVArray.DispossA(H, DeleteFile);
H := nil;
TPVArray.DisposeA(F, DeleteFila);
F := nil;
ond;
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procedure MskaWorkArrays;
{- oreates work arrays H{DOF,DOF] & F(DOF] )}
var Zero : float;
FRam : longint;
bagin
Zero := 0,0;
{ note: TPVarray error handling is set to on for now. write own handler later
if (DOFCount * DOFCount * gizeof(float)) < (MemAvail div 2) then
FRAM :=» DOFCount * DOFCount * sizeof(float)
else FRAM := memAvail div 2;
TFVArray . MskeA(H, DOFCount, DOPCount, sizeof(float),
ForceExtension(OutFileNeme, EMatExtStr),
MamAvail div 2);
TPVArray.ClearA(N, Zero, TPVArray.PastInit);

if (DOFCount * sizeof{float)) < (MemAvail div 2) then FRAM := succ(DOFCount * sizeof(float))

else FRAM := memAvail div 2;
TPVArray .MakeA(P, DOFCount, 1, sizeof(float),
ForceExtension(OutFileName,FVecExtStry),

FRAM);
TPVArrsy.ClearA(F, z;ro, TPVArray.FastInit);
end; { of MakeWorkArrays }

procedure Prep_System;
{= main routine to Prep unit. PFinds discontinuous elements and Global DOFs}

var Tempiell : SourceNode;
Rumlodes : word;
Alpha : float;
PirstDOF : GlobalDOF;
RegCount,

TLDiscCount : word;

function DOFSinNode( NType : BNodeType) : GlobslDOF;

{~ returns number of DOFS at node, depending on Interior of not }
begin

if NIype = Intr then DOFSInNode := 2

else DOFSInNode := 1;
ond;

begin
DOFCount := 1; { initialize DOF counter }
RowCount := 1;
for Zone := 1 to Num_Zones do
with ZoneD[Zone)] do
begin
StartRow := RowCount; { start of equations for zons n }
{ determine if elements need to be discontinous }
for Element := 1 to NumElems do
begin
CurrENum := GetElementNum(Elements,Element);
PrevENum := GetElementNum(Elements,wrspEIndex(pred(Element),NumElems));
GetElement (CurrENum,CurrEl);
» GetElement(PrevENum,PrevEl);
with CurrEl do
begin
{Sundef ALLDISC)
{8ifdeg ALLDISC )}
E1SFType := Disc; { force all elements to disc for now }
{Selea)}

case E1SFType of
Reg :
begin { check if current element should be discontinuous }
{ force intexior-exterior junctions to be discontinous }
if (PrevEl.B.NIype = Intr) or (PrevEL.B.NType = Wall)
then E1SFType := LDisc
else { check leading node boundary conditions and geometry }
case A.NTyps of
Fhi : begin
if PrevEL.B.NType = Phi then
begin { check angle between elements }
GetAlpha(GNoda” [PrevEL.A.Node],
GNode” [PrevEl.B.Node],
GNode” [CurrEl.B.Node],
Alpha);
if abs(aba(Alpha) - Pi) > ZeroTol then
begin { chenge E1SFType of elements, if necessary )}
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E1SFType := LDisc; { et least }
if PrevEL.ELSFIype = LDisc then PrevEL.E1SFType := Disc
olse PrevEl El1SFType := IDisc;
end;
ond;
end; { Phi case }
Intr,

Wall: bsgin
E1SFType := LDisc; ( at least )}
if PrevEl.E1SFIype = LDisc then PrevEl.E1SFType := Disc
else PrevEl.E1SFType := TDiso;
end; { Intr/Wall case }
end; { case }
if (B.NType = Intr) or (B.NType = Well) thsn { chsck treiling node }
oese ElSFType of
Reg : El1SFType := IDisc;
LDiec: E1SFType := Diec;
ond;
end; { Rsg }

TDisc :
begin
if (PrevEl.B.NType = Intr) or (PrevEl.B.NType = Wall) then
E1SFType := Disc
else
case A.NType of
Phi : bsgin
if PrevEL.B.NType = Phi then
begin { check angle betwasn eslements }
GetAlpha(GNode™ (PrevEl.A.Node],
GNode” [PrevEl.B.Node],
GNode" [CurrEl.B.Nodel,
Alpha);
if abs(abs(Alpha) - Pi) > ZeroTol then
begin { change E1SFType of elsments, if necessary }
E1SFTIype := Diso;
if PrevEl.E1SFType = LDisc then PrevEl.E1SFType := Disc
else PrevE].ELSFType := TDisc;
end;
ond;
end; { FPhi cease }
Intr,
Wall: begin
ELSFType := Disc;
if PrevEl.E1SFType = LDisc then PrevEL.EL1SFType := Disc
else PrevEl.E1SFType := IDisc;
end; { Intr - Wall cese )}
end; { cess )
if (B.NType = Intr) or (B.NType = Well) then { check trasiling node }
cese E1SFType of
Reg : E1SFType := TDisc;
LDisc: E1SFTyps := Disc;
ond;
end; { TDisc }

{ pick up lead in elements to int-ext junction; force all al’s disc }
else if ((A.NType = Intr) or (A.NType = Wall)) and (PrevEl.E1SFIype<>Disc) then
if PrevEl.E1SFType = LDisc then PrevEl.E1SFType := Disc
else PrevE]l.E1SFType := TDisc;
end; { case }
{Sendit}
PutElement (CurrENum,CurrEl);
PutElsment (PrevENum, PrevEl);
end; { CurrEl do }
ond; { element loop }

{ find global DOF numbers for zone DOFs )}

{ take care of 1st node in zone first }
CurrENum := GetElementNum(Elements,1);
GetElsment (CurrENum,CurrEl);
if CurrEl.A.DOF = 0 then { 1f not defined yet }
begin
CurrEl,A.DOF := DOFCount;
FirstDOF := DOFCount;
inc(DOFCount, DOFSInNode(CurrEl.A.NType));
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CurrEl.B.DOF := DOFCount;
PutElement (CurrENum,CurrEl);
end .
else
begin
FirstDOF := CurrEl.A.DOF;
deo(DOFCount, DOFSInNode(CurrEl.B.Nlype));

end;
PrevEl := CurrEl;
{ teke care of ell other nodes in zone }
for Elesent :» 2 to NumElems do
begin
CurrENum :~ GetElementNum(Elemente,Element);
GetElement (CurrENum,CurrEl);
if Currel.A.DOF = 0 then { not assigned yet }
with CurrEl do
begin
if (PrevEl.E1SFType = TDiec) or
(CurxrEl.ELSFType=LDisc) or (CurrEl.ELSFType=Disc) then
begin
:nc (DOFCount,, DOFSInNode(PrevEL.B.NType));
ena;
A.DOF := DOFCount;
if Element < NumElems then
begin
inc(DOFCount, DOFSInNode(CurrEl.A.NKType));
B.DOF := DOFCount;
end
else
case ELSFType of
TDiec, Disc : begin
inc(DOFCount, DOFSInNode(CurrEl.A.NType));
B.DOF := DOFCount;
end;
elee B.DOF := PirstDOF;
ond;
ond;
PutElement (CurrENum,CurrEl);
dProv!l := CursEl;
end;

DOFCount := gucc(DOFCount);
{ Celculate number of rows in boundery }

RegCount := 0; { these count up the number of REG elements )}

TLDiscCount := 0; { thess count up the number of T/LDISC elements}

for Element := 1 to NumElems do
begin
CurrENum := GetElementNum(Elements,Element);
GetElement (CurrENum,CurrEl);
case CurrEl.E1SFType of
Reg : begin
inc(RowCount, 2);
Regcount := suco(RegCount);
end;
LDisc,
TDisc: begin
inc(RowCount, 2);
TLDiscCount := suco(TLDiscCount);
ond;
Disc : inc(RowCount, 2);
end;
ond;
RowCount := RowCount - RegCount - (TLDiscCount div 2) - 1;

{ Note: should ALWAYS have an even number of T/LDisc elemsnt types ;

{ for any zone boundary

{ eccount for wells in DOF and row count }
if NumiWells > 0 then
for Well := 1 to Numiells do
begin
GetWell(Zone,Well, TempWell);
TempWWell .DOF := DOFCount;
PutWell(Zone,Well, Tempiell);
DOFCount := suco(DOFCount);
RowCount := succ(RowCount);
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end; 1
2
NumDOFs := DOFCount - StartRow; { store NumDOFs in zone } 3
RowCount := succ(RowCount); [}
end; { ZoneD do } ]
DOFCount := pred(DOFCount); 8
MaketWorkArraya; 7
end; 8
9
procedure GetElFPreedoma(var TElement : TempEl); 10
{~ returns coordinates and interpolated known vals for diso. element types } 11
{ wusea unit global var CurrEl : ElementType. Assumes Linear elements } 12
{ lest modified: 11/22/88 6:16 PM } 13
var Locall, Local2, Normal, Length, SinPsi, CoSinPsi : float; 14
DumbEl : TempEl; 15
18
function N1(X : float) : float; 17
{- returna shape function value for linear element )} 18
begin 18
N1 := (Local2-X)/Length; 20
ond; 21
22
function N2(X : float) : flost; 23
{= returns shape function value for linear element )} 24
begin 25
N2 := (X~Locall)/Length; 26
end; 27
28
begin 29
with CurrEl do 30
begin a
TElement.A.Coord := GNode”[A.Node); 32
TElement.B.Coord := GNode”([B.Node]; a3
caae A.NType of { assume node type same on each end of element } 34
Phi : begin 35
TElement.A.KnownVal := A.Phi; 36
TElement .B.KnownVal := B.FPhi; 37
ond; . 38
DFhi, 39
Wall: begin 40
TElement .A.KnowmVal := A.DFhi; 41
TElement .B.KnownVal := B.DPhi; 42
ond; 43
Intr: begin 44
TElement .A.KnownVal := 0.0; 45
TElement .B.KnownVal := 0.0; 46
ond; 47
ond; 48
TElement.ELType := A.NIype; 49
DumbEL := TElement; { you’ll aee why } 50
GetlocalCoords (DumbEL.A.Coord, { some fixed point, doesn’t matter } 51
GNode” [A.Node], 52
GNode” (B.Node], 53
Normsl, Locall, Local2, SinPsi, CoSinPsi); 54
.Length := abs(Local2 - Locall); 55
with DumbEl do 56
begin 57
if (E1SFType=LDisc) or (E1S£Type=Disc) then 58
begin 59
TElement.A.Coord(X) := A.Coord(X] + (B.Coord[X] - A.Coord[X]) * ElMultl; 60
TElement.A,.Coord(Y) := A,CoordlY) + (B.Coord(Y] - A.Coord{Y¥]) * ElMultl; 61
TElement.A.KnownVal := Nl(LocalltLength*ElMultl)*A.KnownVal + 62
4 N2(Locall+Length*ElMult1l)*B.KnownVal; gz

end;
if (E1SfType=TDisc) or (ELSfType=Disc) then 65
begin 66
TElement.B.Coord(X) := A.Coord(X] + (B.Coord(X] - A.Coord(X]) * ElMult2; 87
TElement.B,.Coord(Y) := A.Coord(Y) + (B.Coord(¥] - A.Coord(Y¥)) * ElMult2; 68
TElement .B.KnownVal := Nl(Locallt+Length*ElMult2)*A,KnownVal + 69
N2(Locall+Length*ElMult2)*B.KnownVal; 70
end; 1
end; { with } 72
73

end; { with }
end; { of GetElFreedoms )} 7
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procedure MekeElList(Zone : byte);

{~ generstes temp list of element coordinates and interpolated known bndy vale }

var TElement : TempEl;
begin
with ZoneD[Zone] do
begin
{ make list using TPArrey routines )

TPRArray.MakeA(TempElLiet, NumElems, 1, Sizeof(TempEl));

£111Char(TElement,eiseof(TElement),0);

TPRArray.ClearA(TempElLiet, TElement, TPRArray.FestInit);

for Element := 1 to NumElems do

begin
CurrENum := GetElementNum(Elemente, Element);
GetElement (CurrENum, CurrEl);
GetElFreedoms (TElement);
PutTElement (TempElList ,Elemant, TELlement);

end;

end;
end; { of MakeElLiet }

procedure Extrapolete(E1SFType : ElementSFType;
var TElement : TempEl);

{- extrapoletes interior velues of diec. LINEAR elemente to end points }

ver N1A, N1B, N2A, N2B : float;
DumbEl : TempEl;
begin
cese ELSFType of
Reg : begin

Ni1A := 1.0;
Ni1B := 0.0;
N2A := 0.0;
N2B := 1,0;
end;
Diec: begin
N1A := 1.5;
N1B := -0.5;
N2A := -0.5;
N2B := 1,5;
end;
LDisc: bagin
N1A := 4,0/3,0;
NiB := -1,0/3.0;
N2A := 0.0;
N2B := 1,0;
ond;
TDisc: begin
N1A := 1.0;
N1B := 0.0;
N2A := ~-1,0/3.0;
N2B := 4,0/3.0;

end; { oo‘o }
with TElement do
begin

DumbEl.A.KnownVal := N1A®A.KnownVel + N1B*B.KnownVel;
DumbEl.B.KnownVal := N2A*A.KnownVal + N2B*B.KnownVal;

end;
TElement := DumbEl;
end; { proc Extrapolate }

procedure PlaceSolution;

{- places eystem results into proper slement locations }

var TEll, TE12 : TempEl;
TWell : SourceNode;
NextEl : ElementTyps;
NextENum : ElementNumber;
Sign : shortint;

begin

for Zone := 1 to Num Zones do

with ZoneD[Zone] do

begin
PrevENum := GetElementNum(Elements,NumElems);
GetElement (PrevENum, PrevEl);
CurrENum := GetElementNum(Elements,1);
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GetElement (CurrENum,CurrEl);
for Element := 1 to NumElems do
begin
8ign := eba(CurrENum) div CurrENum;
HextENum := GetElsmentNum(Elements,
wrapEIndex(succ (Element ) ,NumElems));

GatElement (NextENum,NextELl);

{ sat solution valuss from vactor using global DOF's }
TEL1.A.KnownVal := CheckZaroFloat(gvfloat(F,CurrEl A.DOF,1));
TE11.B.XnownVal := ChockZeroFloat(gvfloat(F,CurrEl.B.DOF,1));
Extrapolate(CurrEl.ELSFType, 1El1);
It,t ((CuxxEL.A,NType = Intzr) or (CurrEl.A.NTypa = Wall)) and (8ign > 0) then
agin
TE12.A.KnownVal := CheckZsroFloat(gvEloat(F,succ(CurrEl.A.DOF),1));
TE12.B.KnownVal := CheckZeroFloat(gveloat(F,succ(CurrEl.B.DOF),1));
Extrepolete(CurrEl ELSFType, TE12);
end; { if -~ Intr/Wall )}

{ kasp Phi’s consistent across slement intarsections }
12 (CurrEL.A.NTypa <> Phi) then
begin
if PravEl.A.Nlype = Phi then
TEL1.A.KnowmVal := PrevELl.B.Phi;
if NeaxtEl.A.NTyps = Phi then
TEL1l.B.KnownVal := NextEl.A.Phi;
end;

{ put extrapolated values into place )}
with CurrEl do
begin
case A, NType of
Fhi : begin
A.DPhi := Sign * TELl1.A.KnownVal;
B.DPhi := Sign * TE1l1.B.KnownVal;
and;
DPhi, :
Wall: begin
A.,Phi := TE11,A.KnownVal;
B.Phi := TEl1l.B.KnownVal;
ond;
Intr: if Sign > 0 then
begin { only placa values if lowest zons w/ common boundary }
A.Phi := TEll.A.KnownVal;
B.Phi := TEl1l,B.KnownVal;
A.DPhi := TE12,A.KnownVal;
B.DPhi := TE12,B.KnownVal;
end;
ond; { case )
end; { with )
PutElement (CurrENum, CurrEl);
PrevElL := CurrEl;
PrevENum :» CurrENum;
CurrEl := NextEl;
CurrENum :» NextENum;
end; { for )
for Well := 1 to NumiWells do
begin
GetWell(Zone,Well,TWell);
with TWell do
oase SourceType of
SPlow : Head := gvfloat(F,DOF,1)
3ﬂud : Flow := gvfloat(F,DOF,1)
and;
PutWall(Zone,Well, TWell);
end; { for }
end; { with }
end; { proc PlaceSolution }

.
L]
.
.

procedure ClearElLiat(Zona : byte);

{~ clesrs temp list of elsment coordinates and interpolated known bndy vals }
begin

TPRArrsy.DisposeA(ZoneD(Zone) . TempElList);

ZoneD(Zone] .TempElList := nil;
{8ifdef DEBUG)
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writeln(Outfile, 'w==> MaxAvail: ! ,Maxavail);

{Sendig}

and; { of ClearElList )}
and. { Of Unit B7PREP <#Wantanananeaanhadananddnance )
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Untt B7Int;

Program GWBEM =~ Unit B7INT

Contains analytical integrations ussd for solution of
boundary and internal unknowns, Linear elements.

Copyright (o) 1989, Mark A, Lisbe and Iowa State
University

ALL RIGHTS RESERVED
Lest modified : 10/20/688 4:20 PM

interface

uaes B7Def,
B7Utils,
TPArr,
B7Data,
B7Prep;

Procedure Integrate Boundary;

procedure Integrate_Interior;

{- integrates from each interior node to determine potential and flux values )}

{
implementation

type
Integral_Vec= Array(l..8] of float;
Integral Coefa = array(1..3,1..2) of float;

var :
Integral: Integral Vec;
Locsll, Loocsl2, Normal, Alpha, Length,
Sign_Normal, Distance, Conductivity, FundSol : float;
SourceCoords : CoordinatePair;

->»>>Int_Lin_SP<<<

{
{
% Last Modified -- 12/08/87.

Note: Integration in assumed positive in the CLOCKWISE direction.

---}
Routine to calculate integrals for linear shspe functions on the boundary}
}

{
PROCEDURE Int_Lin_8F( Where : NodeIype;

Normal, El, E2 : float; { Local coord of bnd. elemnt }

var Integrsl : Integral_Vec);

CONST
Zero_Tol = 1,0E-5;

VAR
R_Sqr,
Ln_R_Sqr,
Arotn,
Xi,
LnR : array{l..2) of float;
E2 _El1 : float;
J : Integer;

Function INT1(J:Integer): float;
BEGIN

{
{ boundery integration.
IF Normal = 0.0 then {

This integral is used for the

As such

it will have a singularity when

BEGIN { the source and the field point

IF Xi(J] = 0.0 then INT1 := 0.0 { are the ssme.
ELSE INT1 := -1,0 / (2.0 * Xi[J));
END
ELSE
INT1 := Arctn[J) / Normal;
END;

Function INT2(J:Integer): float; { Same here, see INT1 )}
Begin

}
}
}
}
}
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IF Normal = 0.0 then 1
BEGIN 2
IF X4[J) = 0.0 then INTI2 := 0.0 3

ELSE INT2 := Ln(ABS(Xt(J}1)); 4

END -]
ELSE 8
INT2 := 0.5 * Ln R _Sqr{J}; 7

End; 8
9

Function INT3(J:Integer): float; { The reat of the integrals sre either} 10
Begin { not used for boundary integrations, } 11
INT3 := Xi[J]) - Normal * Arctn(J]; { or contain no non-integrable singu. } 12
End; 13
14

Function INT4(J:Intager): flost; 15
Begin 16
IF Normal = 0.0 then 17
INTA := -1,0 / (3.0 * Pow(Xi(J),3.0)) 18

ELSE . 19
INT4 := Xi(J)/(2.0 * R_Sqr(J] * Pow(Normal,2.0)) + 20
(Arctn[J] / (2.0 * Pow(Normal,3.0))); 21

End; 22
23

Function INTS3(J:Integer): float; 24
Begin 25
IF Normal = 0.0 then 26
INTS := =1,0/(2.0 * Pow(Xi(J],2.0)) 27

ELSE 28
INTIS := - 1.0 / (2.0 * R_Sqr(J]); 29

End; 30
31

Function INT8(J:Integar): float; 32
‘Begin 33
IF Normal = 0.0 then 34
INT6 := - 1,0 / (2.0 * Xi(J)) 35

ELSE 36
INT8 := - (Xi[J] / (2.0 * R _Sqe(J1)) + (Arctn(J] / (2.0 * Normal)); 37

End; as
' 39

Function INT7(J:Integer): flost; 40
Begin 41
INT7 := 0.25 * R_Sqr(J) * (Ln_R_Sqr{J] - 1.0); 42
End; 43
44

Function INT8(J:Integer): float; 45
Begin 46
!ndIKTB = 0.5 % (Xi(J] * Ln_R Sqe(J] - 2.0 * Xi(J) + 2.0 * Normal * Arctn{J}); 47
H 48

49

BEGIN 50
Fillchar(Integral,Sizeof(Integral),0); 51
X4i[1l) := E1; 52
Xi[2) := E2; 53
E2 El := E2 - E}; 54
FOR J := 1 to 2 do 55
BEGIN 58
R_Sqr(j) := Normel * Normal + Xi(j] * Xil[jl; 57
IF Abs(Noxmal) < Zero_Tol then 58
Arctn{jl := 0.0 59

E 60
Arotnlj) := ArcTen(Xi(j)/Normal); 61

IF R_Sqr{j] = 0.0 then 62
Ln_R_Sqr(j) := 0.0 63

elee 64
Ln_R_Sqr{J) := Ln(R_Sqr(jl); 65

end; 66
Case whers of 87
Boundary : begin 68
Integrel(l) := Inti(2) - Intl(1l); 69

Integral(2) := Int2(2) - Int2(1); 70

Integrell?] := Int7(2) - Int7(1); 71

Integrel(8) := Int8(2) - Int8(1); 72

ond; 73

74

Interior : begin 75
76

Integrel{l] := Int1(2) - Intl(l);




Integrall2)
Integral(3]
Integral(4]
Integrel(S]
Integral(8)
Integral(?]
Integral(8}
end;

end; { case }
snd; { of Int_Lin SF}

{--->>>Integrate_Boundery<<<
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Int2(2) -~ Int2(1);
Int3(2) -~ Intd(1);
Inté(2) - Inté4(l);
Int5(2) -~ Int5(1);

Int8(2) - Int6(1);
Int7(2) - Int7(1);
Int8(2) - Int8(1);

{ Includes coda for doubly defined flux at boundary cornar
{ Includes coda for multiple sones

{ Last modified:

10/20/68 3:07 PM

Procedurs Integrate_Boundery;
type ElementEnd = (A,B);

Var Ke

SourceEl, FieldEl :

Intagrel_Coefs;
Row, l!odo, SourcsNum, Fhld, LestDOF, SouzuDOF
SQurco-un, FieldENum :

LestElType : BNodl‘rypc

TSourceEl, Itul.d!l PFieldEl, NFieldEl :
WellBut : Sourcultod.-
Lutﬂodc, OKtoCQJ.l.oc-u : boolean;

byte;

zl.-ncncmnbor :

ElementType;

function AngleAtNode(Zone : byte;

var ThisSourcs : GlobalDOF;
var ThisSourceEl : ‘.l'ompBl.-
Where : ElementEnd) : float;

{- returne angle st node stvon source 1ndox in local element list )}

var OtherEl : TempEl;
OtherENum : GlobalDof;

TempAlpha : float;

with ZoneD([Zone] do
case where of

begin

A : begin

{ at first node of element )}

smpEL;

GlobelDof;

OtherENum := WrapWord(NumElems,pred(ThisSource));
Gotﬂlmont(i‘oﬂp!u.ut. OtherERum, OtherEl);
GetAlphs(OtherEl.A.Cooxd,

ThilSourcozl.A.Coo:d.
ThisSourceEl.B.Coord,
TempAlphe);
end;
B : begin { at lest node of element }

OtherENum := WrapWord(NumElems,succ(ThisSource));

GotTElement (TempElList, OtherENum, OtherEl);

GetAlpha(ThisSourceEl.A.Coord,
ThisSourceEl.B.Coord,
OtherEl.B.Coord,

TempAlpha);

ond;
ond; { casa }
AngleAtNode := TsmpAlpha;
end; { function AngleAtNode }

procedure GetIntCoefs(ver Ke :

{- returns proper Integral coctncionn for addition to system of equations }

Integrel_Coefs);

{ dimplements LINEAR elements for now )}
var Maltl, Mult2 : float;

begin

{ Check on direction from source point to element }

Sign_Normal := -(TFieldEl.A.Coord{X] - SourceCoords{X)) *
(TFieldEl.B.Coord{Y] - TFieldEl.A,CoordlY}])

begin
Ke(1,1]

+(TFieldEl.B.Coord{X} ~ TFieldEl.A.Coord(X]) *

(TFieldEl.A.Coord(Y) - SourceCoords{¥});
if FieldELl.ELSFType = Reg then

= (LocalZ * I12 - I11)/Length;

gt ade A X
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Ke(1,2) := (I1l1 ~ Locall * I12)/Length;
Ke(2,1) := (Local2 * 122 ~ I21)/Length;
Ke(2,2] := (I21 - Locall * I22)/Length;
ond
elee
begin

cese FPleldEL E1SFType of

LDisc:begin
Multl := 4.0/(3.0*Length);
Mult2 := 4.0/3.0 + Multl * Locall;
ond;
TDisc:begin
Multl
Mult2
ond;
Disc :bagin
Multl := 2,0/Length;
Mult2 := 1.5 + Multl * Locall;
ond;
ond; { case }
Ke[l,1] := Mult2 * I12 -~ Multl * Il1;
Ke[1,2] := Multl * I11 - (Mult2-1,.0) * 112;
Ke[2,1) := Mult2 * 122 - Multl * I21;
Ke[2,2) :» Multl * 121 - (Mult2-1.0) * 122;
end; { else )}
if SourceDOF = FieldEl.A.DOF then Ke[1,1) := -Alpha; { check for sing. point }
if SourceDOF = FisldEl.B.DOF then
if (FieldELl.E1SFType=TDisc) or (FieldEL.ELSFType=Disc) then
Ke(1,2) := -Alpha; .
if SourceDOF <> FieldEL.A.DOF then Sign(Ke[1,1], Sign Normel);
if SourceDQF <> FieldEL.B.DOF then Sign(Kef{l,2), Sign_Normal);

4,0/(3.0*Length);
1.0 + Multl * Locall;

end; { proc GetIntCoefs }

procedure FPlaceCoefs(ELSFType : ElementSFType;
Prev, This, Next : TempEl;
Ke : Integral Coefs; :
SourceNum, Fieldl, Field2 : GlobalDof;
TypeofElement : BNodeType;
Kx, Ky , ThetaX : float);
{~ places integral coefs into system of eq.s based on node type }
var ZoneSign : shortint;
begin
case TypeofElement of

Phi : begin
{ first node }
PVLloat(B, Row, Fieldl, GVFloat(H, Row, Fieldl) - (Kel[2,1]));
PVflost(F, Row, 1, GVfloat(F, Row, 1) - (Kx*Ke(1,1] * This.A.KnownVal));

{ second node }

PVfloat(R, Row, Field2, GVFloat(H, Row, Field2) - (Ke[2,2)));

gﬂto;:(l?i Row, 1, GVfloat(F, Row, 1) - (Kx*Ke(1,2] * This.B.KnownVal));
end; i

DPhi,
Wall: begin
{ firat node }
if (Prev,.ElType <> Phi) or (E1SFType = Disc) or (E1SFIype = LDisc) then
PVfloat(H, Row, Fieldl, GVFloat(H, Row, Fieldl) + (Kx*Ke[1,1)))
olse
PVfloat(F, Row, 1, GVFloat(F, Row, 1) - (Kx*Ke[1,1) * Prev.B.KnownVal));
PVfloat(F, Row, 1, GVfloat(F, Row, 1) + (Ke(2,1) * This.A.KnownVal));

{ second node }
if (Next.ElType <> Phi) or (ELSFType = Disc) or (ELSFIype = TDisc) then
1?V£l.ont(li, Row, Field2, GVFloat(H, Row, Field2) + (Kx*Ke(l,2]))
olse
PVLloat(F, Row, 1, GVFloat(F, Row, 1) - (Kx*Ke(1,2) * Next.A.KnownVal));
Pvm(m(r. I)low, 1, GVEfloat(F, Row, 1) + (Ke[2,2) * This.B.KnownVal));
end; DPhi

Intx: begin
{ note: double DOFs for each intr nodes, PHI dof ALWAYS lst }

if FialdENum < 0 then ZoneSign := -1 else ZoneSign := 1;
{ Phi unknown DOF }
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PVZloat(H, Row, Fieldl, GVFloat(H, Row, Fieldl) + (Kx*Ke[1,1]))
PVeloat(H, Row, Pield2, GVFloat(H, Row, Field2) + (Kx*Ka[1,2]))
{ DPhi Unknown DOF }

PVLloat(H, Row, succ(Fieldl),

ZoneSign * (GVFPloat(H, Row, succ(Fieldl)) - (Ke(2,1])));

PVfloet(H, Row, succ(Field2),
end; { Intr }

ZoneSign * (GVFloat(H, Row, succ(Field2)) - (Kel2,2))));

end; { case }
end; { proc PlaceCoefs }

procedure GoAroundBoundary(Zone : byte);
{- performs boundary integretion around zone boundary }
var Fisld : GlobelDOF;
begin
with ZoneD[Zone] do
begin
{ set up for first field element}
GetTELsment (TempElLiet, NumELlems , PFieldEL);
GetTELlement (TempElList,1l, TFieldEl);
for Field := 1 to NumElems do
begin
PieldENum := GetElementNum({Elsments, Field);
GetElement(FieldENum, FieldEl);
GetTElement (TempElLiet ,wrapword (NumElems, succ(Field)),NFieldEl);
GetLocalCoords(SourceCooxds,
GNode” [FieldEl.A.Node],
GNode" {FieldEl.B.Node],
Normal, Locall, Local2, SinPsi, CoSinFsi);
Int_Lin_SF(Boundary,Normal, Locell, Locel2, Integral);
111 := Normal * Intesral(2];
I12 := Normal * Integral(l);
121 := Integrall?l;
122 := Integrell(8);
Length := Local2 - Locall;

GetIntCoefs(Ke);
with FieldEl do
PleceCoefs(FieldEL.E1SFType, FPFieldEl, TFieldEl, NFieldEl, Ko,
Row, A.DOF, B.DOF, A.NType, Kx, Ky, ThetaX);

{ swap temp elements }
PFieldEl := TFieldEl;
TFieldEl := NFieldEl;.

end; { Field - Loop }
ond; { with }
end; { of proc GoAroundBoundary }

procedure AddSources(Zone : byte; SourceDOF : GlobalDOF ;
WhereSource : NodeTyps);
{~ collocates from boundary nodes to wells -}
{- last modified: 11/28/88 7:13 BM -}
var Fiald : GlobalDOF;
TWell : SourceNods;
begin
with ZoneD[Zone)] do
begin
if NumWells <= 0 then Exit;
for Field := 1 to NumWells do
begin
GetWell(Zone, Field, TWell);
Distance := Radius(SourceCoords(x),SourceCoords(y],
TWell.Coord(x],TWell.Coord{y));
case WhereSource of

Boundary :
begin
FundSol := -ln(Distance);
ocase TWell.SourceType of
SFlow : PvFloat(F,Row,1,
GvFloat(F,Row,1) + FundSol * TWell.Flow);

SHead : PvFloat(H,Row,TWell.Dog, -FundSol);
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end;
end; { Boundery }

Source :
begin
if TWell.DOF = SourceDOF then
begin
FundSol := -1n(TWall.Radiua);
case IWell, Sourcelype of
SFlow :
begin
PVPloat(F,Row,1,GVFloat(F,Row,1) + PundSol * TWall.Flow);
gvnomn ,Row,TWell DOF,~2%Pi * Conductivity);
end;

SHead :
begin
PVFloat(F,Row,1, GVFloat(F,Row,1) +
2*Pi*TWell .Head * Conductivity );
PVFloat(H,Row,TWell.DOF, -FundSol);
end;
end; { case }
end
else
begin
Diatanca := Rsdius(SourcsCoords([x],SourceCoords(y],
Twell.Coord(x],TWell.Coord(y]);
FundSol := -ln(Distancs);
case TWell, SourceType of
SFlow :
begin
PVFloat(P,Row,1,GVFloat(F,Row,1) + PundSol * TWell.Flow);
PVFloat(H,Row, TWell .DOF, 0.0);
ond;

SHead : PVFloat(H,Row,TWell.DOF, ~FundSol);
end; { case } .
end; { elsa }
end; ( Interior }
end; { case }
and; { field loop }
end; { with }

end; { of add sources }

begin { integrate_Boundary }
for Zone := 1 to Num Zones do
with ZoneD[Zone} do

begin
MakeElList(Zone); { set up temporary element list}
Row := pred(StartRow);
SourceNum := 1; { set up for 1st element}

SouroeENum := GetElementNum(Elements, SourceNum);
Conductivity := Kx; { for now, just isotropic conductivity }
GetElement(SouxceENum, SourceEl);
GetTElement (TempElList,SourceNum, TSourceEl);
LastDOF := succ(SourceEl.B.DOF); { an arbitrary DOF}
LastElType := SourceEl.B.NType;
LastNode := False;
while SourceNum <= NumElems do
begin
{ select source point for collocation }
if LastNoda then { check to ses if has been colloc}
case SourceEl.E1SFType of
TDisc, Disc : begin
Alpha := Pi;
SourceCoords := TSourceEl.B.Coord;
SourceDOF := SourceEl.B.DOF;
OKtoCollocate := True;
Row := succ(Row);

end;
else OKtoCollocats := False;
end { case }
else
begin
case SourceEl.ELSFType of
LDisc, Disc: Alpha := Pi;

ot mes 4o o memte < e b— g S — b b8
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;Iu Alpha := AngleAtNode(Zone,SourceNum, ISourceEl,A);
end; .
SouroeCoords := TSourceEl.A.Coord;
SouroeDOF := SourceEl.A,.DOF;
OKtoCollocate := True;
Row := gucc(Row);
end;
4if OKtoCollocate then
begin
GoAroundBoundery(Zone);
:ddSmeu(Zono. SourceDOF, Boundary);
end;

if LastNode then
begin { set next element for source collocation}
SourcaNum := succ(SourceNum);
1if SourceNum <= NumElems then
begin
SourceENum := GetElementNum(Elements, SourceNum);
LaetDOF := SourceEl.B.DOF;
LastElType := ScurceEl.B.NType;
GetElement. (SourceENum, SourceEl);
GetTElement (TempElList, SourceNum, TSourceEl);
LastNode := False;
end;
end
else
begin
LastNode := True;
LastDOF := SourceEl.A.DOF;
end;

end; { while - source loop )}

{ integrate FROM sources to boundary nodes )}
for SourceNum := 1 to NumWells do

begin

Alphe := 2,0 * P{;

GetWall(Zone, SourceNum, WellBuf);
SourceCoorde := WallBuf.Coord;
SourceDOF := WallBuf.DOF;

Row := gucc(Row);
GoAroundBoundary(Zone);
AddSources(Zone, SourceDOF, Source);

end;
ClearElLiet(Zone);
end; { sone loop )}

END;

{-~->>>Integrate_Interior<<<

{ procedure integrate_boundery }

= }
% Last modified 12/02/88 12:53 PM ;

procedure Integrate_Interior;

{- integrates from each interior node to determine potential and flux values }
var DX, DY : float;
ING : aryey(l..3,1,.4) of float;
Phi_Ke,
DPhiX Ke,
DPhiY_Ke Integral_Coefs;

IntNodeBuf : InteriorNode;
Node : GlobalDOF;

Procedure GetIntCoef(Var Ke : Integral Coefs);

begin

Kell,1) :=(~ING(1,1] + Local2 * INGI[1,2] )/
(Length);

Ke[1,2] :=( ING(1,1]) ~ Locall * ING(1,2] )
(Length);

Kel[2,1] :=(~ING(2,1) + ING(2,3) + Local2 * ( ING[2,2] - ING(2,4]))/
(Length);

Ke(2,2] :=( ING(2,1] -~ ING(2,3] + Locall * (-ING(2,2] + ING(2,4]))/
(Length);

Ke(3,1) :=(~ING(3,1} + ING(3,3] + Local2 * ( ING[3,2) - INGI3,4)))/

S
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(Length);

Ke(3,2] :=( ING(3,1]) -~ ING(3,3] + Locall * (~ING(3,2] + ING(3,4])))/
(Length);
end;

procedure GoAroundBoundary(Zone : byte);
{~ performs boundary integration around zone boundary }
var Field : GlobelDOF;
FieldEl : ElsmentIype;
FlieldENum : ElemantNumbar;
Sign : shortint;
hegin
with ZoneD{Zone] do
bagin
{ oot up for first field elsmsnt)
for Fisld := 1 to NumElems do
bagin
FieldENum := GetElementNum(Elsments, Fisld);
Sign := abs(FieldENum) div FieldENum;
GetElsment (FisldENum, FieldEl);

with FieldEl do { reverse sign on boundary fluxes if secondary zona }'

begin
A.DPhi := Sign * A.DPhi;
B.DPhi := Sign * B.DPhi;
ond;
GetLocelCoords(SourceCoords,
GNode” [FieldEl.A.Node],
GNode" [FisldEl.B.Node],
Normel, Locell, Local2, SinPei, CoSinPei);
Int_Lin_SF(Interior,Normel, Locsll, Local2, Integral);
Lsngth := Locel2 ~ Locall;

{ Calculate integrsl components for Phi }
FillCher(ING,Size0L(ING),0);

ING[1,1) := Normal * Integral(2];

ING{1,2] := Normal * Integralll);

ING(2,1) := Integrel(7);

ING[2,2) := Intagrel(8);

GetIntCosf(Phi_Ke); { Note : there is no 3rd term in Fhi eq }

{ Celculete integral components for DPhi - X direction }
Fi11Cher(ING,SizeO£(ING),0);

ING(1,1) := SinPsi * Integral{2];

ING(1,2] := SinPsi * Integral(l];

ING(2,1) := 2.0 * Normel * CoSinPsi * Integral(S);
ING(2,2) := 2.0 * Normel * CoSinPsi * Integral(5);
ING[2,3) := 2.0 * Normal * Normal * SinPsi * Integrel(5);
ING(2,4) := 2.0 * Normal * Normal * SinPsi * Integral(4];
ING[3,1) := CoSinPsi * Integral(l);

ING(3,2] := CoSinPsi * Integral{2];

ING(3,3] := Normel * SinFPei * Integral(2);

ING(3,4] := Normal * SinPsi * Integral(ll;
GetIntCoaf(DFPhiX_Ke);

{ Celculete integral components for DPhi - Y direction }
FillChar(ING,Size0L(ING),0);

ING[1,1] := ~ CoSinPsi * Integrell(2];

ING{1,2) := - CoSinPsi * Integrallll;

ING(2,1) := 2,0 * Normel * SinPsi * Integral(6);

ING(2,2]) := 2.0 * Normal * SinPsi * Integrel(5];

ING(2,3) := - 2,0 * Normal * Normal * CoSinPsi * Intsgrall5);
ING[2,4) := -~ 2.0 * Normal * Normsl * CoSinPsi * Integrallé);
ING(3,1] := SinPsi * Integral(3l;

ING[3,2) := SinPsi * Integral(2);

ING(3,3) := - Normal * CoSinPsi * Integral(2];

ING[3,4) := - Normal * CoSinPsi * Integresl{l};
GetIntCosf(DPhiY_Ke);

IntNodeBuf.Phi := IntNodeBuf.Phi +
Conductivity*(Phi_Ke(1,1) * FisldEl.A.Fhi +
Phi_Ke(1,2] * FieldEl,B.Phi) -
(Phi_Ke[2,1] * FialdEl.A.Dphi +
Phi_Ke([2,2) * FieldEl.B.DFhi);

IntNodeBuf.DFhiX := IntNodeBuf.DPhiX + Conductivity *

e oo ve es o
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((DFhiX Kell,1]) + DFhiX Kel2,1)) * FieldEl.A.Phi +
(DPhiX Ke(1,2] + DPhiX Ke(2,2]) * FieldEL.B.Fhi) +
(DPhiX Ke{3,1) * FieldEl.A.Dphi +

DPhiX Ke[3,2] * FieldELl.B.DPhi);

IntNodeBuf .DPhiY := IntNodeBuf.DPhiY + Conductivity *

((DPhiY¥ Ke[1,1) + DPhiY Ke(2,1]) * FialdEl.A.Phi +

(DPhiY_Ke(1,2] + nmu:x-tz.zn * FieldEl.B.Fhi) +
(DPhiY Ke{3,1] * FPieldEl.A.Dphi +
DFhiY_Ke{3,2) * FieldEl.B,DFhi);

end; { Fleld - Loop )
end; { with )
end; { of proc GoAroundBoundery }

procedure AddSources(Zone : byte);
{~ edds source information to interior nodes -}
{- lest modified: 12/04/88 7:58 AM -}
var Field : GlobalDOF;
DX, DY : float;
TWell : SourcsNode;
begin
with ZoneD(Zone) do
begin
if Numielle < 1 then Exit;
for Fleld := 1 to NumWells do
begin
GetWell(Zone, Field, TWell);
Distence := Radius(SourceCoords({x],SourceCoords(y],
TWell.Coord(x],IWell.Coord(yl);
DX := (TWell.Coord{X]-SourceCoords(X});
DY := (TWell.Coord(Y)-SourcsCoords(Y));
IntNodeBuf.Phi := IntNodeBuf.Phi +(-} (In(Distance) * IWell.Flow({* Conductivity});
IntNodeBuf .DFhiX := IntNodeBuf.DPhiX -
(DX*TWell.Flow)/({Conductivity*}Dietance*Dietance);
IntNodeBuf .DFhiY := IntNodeBuf.DFhiY -
(DY*TWell.Flow)/({Conductivity*}Distance*Distance);
end; { field loop }

end; { with }
end; { of add sources )}

begin { integrate_Interior }
for Zone := 1 to Num_Zones do
with ZoneD{Zone] do
begin
for Node := 1 to NumInt do
begin
Alphe := 2,0 * Pi;
Conductivity := Kx; { for now, just isotropic conductivity }
GetIntNode(Zone, Node, IntNodeBuf);
SourceCoords := IntNodeBuf.Coord;
GoAroundBoundary(Zone);
AddSources(Zone);
with IntNodeBuf do
begin
Phi := Phi / (Conductivity * Alpha);
DPhiX := -DPhiX{ * Conductivity} / Alpha;
gl’ht! := -DPhi¥{ * Conductivity} / Alpha;
end;
PutIntNode(Zone, Node, IntNodeBuf);
end;
end; { zone loop )
end; { procedure integrate_interior }

end. { UNit B7int SAAARAARRARAAARRARENARRNAIANCS )
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unit B7File;
{

Program GWBEM - Unit B7FILE
Contains file I/0 routines. Linear elements.

Copyright (c) 1989, Mark A. Liebe and Iowa State
University

ALL RIGHIS RESERVED

TPRArray, TPVArray, and TPString units copywrite (o)
1987 by TurboPower Software. Part of Turbo Profes-

sional Programmer’s Toolbox V4,0, For information,

contact:

TurboPower Software

3108 Scotts Valley Drive, Suite 122
Scotts Valley, CA 95088

(408) 438-8608

Laat modified : 12/12/88 11:15 AM

interface

uses N
B7deft,
TEVArray,
TPRArray,
TPArr,
TPString,
B7Data;

Type File Op = (Rd, Wrt);

procedure GET_DATA;
{- loads data from text file }

procedure OFEN_TEXT FILE(var File_to_Open : text;
Name_File : File_name;

Flag : Pile Op);
{- preparea a text file for reading or writing )}

procedure WriteFloatTEV(Mat : TPVarray.TPArray; Size :word; Length, Decimal : byte;
Hoader : Titlestring);
{- output formatted listing of TP virtual array to outfile }

procedure Dump System(Suffix : File Ext);
{- outputs system element definitions }

procedure DumpH_F(Var H, F : TPVArray.TPArray;
RowSiza, ColSize :word; Length, Decimal : byte;
Header : Titlestring);
{ dumps matrix out in row order in a linear list }

procedure WriteBoundarySolution;
{- formatted output for LINEAR element solution }

procedure WriteSourceSolution;
{- formatted output for source solution }

procedure WriteInteriorSolution;
{~ formatted output for interior node solution }

procedure writeGridFile;
{- prints out solution grid files for contouring }

procedure DumpSolVec;
{- dumps solution vector to outfile }

{
implementation

var Hour, Min, Sec, SecldO,
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Year, Month, Day, DayofWeek : Word;
Node, Elsment, Nodeindex, Blindex: word;
ElementNum : ElementNumber;

Zone : byte;

CurrEl : ElsmentTyps;

CurrElNum : ElementNumber;

CurrINode : InteriorNode;

CurrWell : Sourcenode;

const Zexo : byte = 0;
RealWidth = 12;
Width = 11;
Places = 4;

prooedure GET_DATA;
{- loads data from text file )

VAR Dumbtype : byte:;
CurxWell : SourceNode;
CurrINode : InteriorNode;
Dietance : Float; (<<<}

function SelectBType(Dumb : byte):BNodeType;
{- returns enumerated value of byte dumb }
begin
cese Dumb of
0 : SelectBTypse := Phi;
1 : SelectBType := DFPhi;
2 : SelectBType := Intr;
3 : SelectBIyps := Wall;
end;
end; { of SelectBIype }

function SelectSType(Dumb : byte):SNodeType;
{= returns enumerated value of byte dumb }

0 : SeleotSType := SFlow;
: 1 SelectSTyps := SHead;
en

BEGIN
READ(Infile,TITLE);
WRITELn(Outfile, TITLE);
writeln(Outfile);
writeln(OutFile,’ Run date: ’,Month:2,'/’,Day:2,'/’,Year:4,
' Run time: ’',Hour:2,’:’,Min:2);
writeln(OutFile);

{ read in global nods coordinates }
Readln(InFile,Num_BNodes);
writeln(Outfile, '*#*#> Global Node Information <w¥w’).
Wreiteln(Outfile, 'Number Global Nodes : ’,Num BNodes);
writeln(Outfile);
writeln(OutFile,’-~-> Global Node Definition <---');
writeln(Quttile);
writeln(OutFile, 'Node X-Coor Y-Coor'’);
writeln(OutFile,’~~-- = =  ==ccee = ccece- ');
writeln(Outfile);
for Node := 1 to Num_BNodes do

Readln(InFile,NodeIndex,GNode” [NocdeIndex] [X],GNode" [NodeIndex] (¥]);
for Node := 1 to Num BNodes do

Writeln(Outfile,Node:4,’ * ,GNode” {Node] [X] :RealWidth,’ ! ,GNode" {Node]{Y]:RealWidth);

{ read in global element definitions )}
readln(InFile,Num_Boundaries);

writeln(Outfile);

writeln(Outfile,’**w> Global Element Information <wwaw’).

writeln(Outfile);

Writeln(Outfile, 'Number Global Elements : ’,Num_Boundaries);

writeln(Outfile);

writeln(OutFile,’ ~===> Global Element Definition <----!);
writeln(Outfile);

writeln(Outfile,’ First ncde Second node’);
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writeln(OutFile, 'Elem| Node Type Known Velue Node Type Known Value ');
writeln(OutFile, ' ====] ~meec ccce cececca-- - mese swme  ccccseecces );
for Elsment := 1 to Num Boundaries do
begin
read(InFile, ElIndex);
with GElean" [ElIndex]) do
begin
{ take care of A node stuff )
read(InFile,A.Node,DumbType);
A.NType := SohetBl‘ypc(MTypo :
case A.lﬂ‘ypc of { write out node A info }
Phi : reed(InFile,A.Phi);

dPhi: <read(InFile,A.DPhi);

else begin
read(InFile,A.DPhi);
A.DPhi := 0.0; { since this is a fake value, cancel hera }
end;
end; { cese )}

{ teke cers of B node atuff }

Read(InFile,B.Node,Dumblype);

B.NTypa := SalectBType(DumbType);

cese B.NType of { write out node B info }
Phi : reedln(InFile,B.Fhi);

dPhi: readln(InPile,B.DPhi);

else begin
read(InFile,B.DPhi);
B.DPhi := 0.0; { since this is a fake value, cancel here }
end;
end; { case )
end; { with }
end; { for }
for Elsment := 1 to Num Boundaries do
with GElsm”[Element) do
begin
case A.NType of { write out node A info }
Phi : write(OutFile,Element:4,’|’,
A.Node:4,’ ',
BTIypeStri{A. Nrypo],' ‘',
A.Phi:RealWidth,’ |’);
dPhi: write(OutFile,Element:4,’|’,
A.Nodo:b,' ',
BMCSG![A.NM.],' ',
A.DFhi:ReelWidth,' |’);
else write(OutFile,Elsment:4,’]|’,
A.Node:4,’ ',
BTyplStr[A.M'ypo] v,
Center(’'#*#+’ RealWidth),’ [');
ond; { case }

case B.NType of ({ write out node B info }
Fhi : writeln(Outfile,B.Node:4,' °*,
BTypeStr{B.NIype),' ’,
B.Phi:ReaiWidth);
dPhi: writeln(Outfile,B.Node:4,’ ',
BTypeStr(B.NType],’ ',
B.DPhi:RealWidth) i
else writeln(Outfile,B.Node:4,’ ',
BTypeStr([B.NType),® '
Center(’wes! Rnl.wldt.h) );
ond; { case }
ond;
{ read in zone information }
reedin(InFile,Num Zones);
writeln(Outfile);
writeln(Outfile,’*##> Zone Information <www’).
writeln(Outfile);
Writeln(Qutfile, 'Number Zones: ’,Num Zones);
writeln(Outtile);
if Num_Zones > Max_Zcnes then
begin
writeln(“G’'Sorry, too many zonest!');
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halt(l);

end; :

for Zone := 1 to Num_Zones do
with ZoneD[Zone] do

begin

writeln(OutFile,'~-=> Zone ’,Zone:2,’ date <--=');
READIn(InFlle,NumElems, NumWells, RumInt, Kx, Ky, TheteX);
writeln(Outfile,’ Number Boundery Elements: °’,NumElems);

writeln(Outfile,’ Number Wells: ! ,NumiWells);
writeln(Outfile,* Number Interior Points: !, KumiInt);
writeln(Outfile,’ Kx: !, Kx:RealWidth);
writeln(Outfile,’ Ky: ! ,Ky:RealWidth);
nitugggttti.. ' Theta-x: * ,TheteX:ReelWidth);
write tfile);

{ meke dynamic arrays for this zone }

if NumElems > 0 then

begin
TFRArray .MekeA(Elements, HumElems, 1, Sizeof(ElementNumbexr));
ElementNum := 0;
:M:ny.ClouA(nmmtl , ElementNum,Fastinit);

end;

if Numbells > 0 then

begin
TPRArray .MakeA(Wells, RumiWells, 1, SizeOf(SourceNode));
FillChar(CurriWell,Sizeof(CurriWell),0);
(I!Mny .ClearA(Wells, CurrWell, Faetinit);

ond;

if NumInt > 0 then

begin
TPRAxrey.MakeA(IntNodes, NumInt, 1, SizeQf(InteriorNode));
FillChar(CurrINode,Sizeof(CurrlNode),0);
:Mny .ClearA(IntNodes, CurrINode,Fastinit);

ond;

{read in boundary slement list for this zone )}
writeln(OutFile,’ Global element list -- Zone ’,Zone:3);
writeln(OutFile);

writeln(OutFile,’ Local Global ')
writeln(OutFile,’ ~==ee= = cocow- ')
if NumElems > 0 then

for Element := 0 to pred(NumElems) do

- we

begin
Read(InFile,ElementNum);
TPRArray.SetA(Elements,Element,0,ElementNum);
if Eoln(InFile) or (IOResult <> 0) then readln(Infile);

:ut.oln(Outtih. 4 ! ,succ(Element):4,’ ! ,ElementNum:4);

ond;

{read in well information for this zone }

writeln(OutFile);

writeln(OutFile,’ Well definition -- Zone ’,Zone:3);

writeln(OutFile);

writeln(OutFile, ’'Node X Coor Y Coor Radius Type Spec. Value');
writeln(OutFile,'~~=-  ==v=e- —=me  meemccecene ')

if Numells > 0 then
for Node := 1 to NumiWells do
with CurriWell do
begin
Read(InFile,NodeIndex,Coord{x), Coord(y), Radius, DumbType);
SourceType := SelectSType(DumbIype);
cese SourceType of
SFlow : readln(Infile, Flow);
SHead : readin(Infile, Head);
end;
PutiWell(Zone, NodeIndex, CurrWell);
end;
for Node := 1 to NumMells do
begin
GetWell(Zone, Node, CurrWell);
with Curriell do
cese Sourcelype of
SFlow : writeln(Outfile,Node:4,’ ',
Coordix) :RealWidth,' °*,
Coord[y]) :RealWidth,’ ’,
Radius:RealWidth,’ ',
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STypeStr(Sourcelypel,’ ', 1

Flow:RealWidth); 2

SHeed : writeln(Outfile,Node:4,’ ', 3

Coord(x] :ReelWidth,’ °*, 4

Coord{y) :RealWidth,’ ¢, ]

Radiue:ReelWidth,’ °*, 6

STypeStr(SourceType),’ ', 7

Head:RealWidth); 8

end; 9

end; 10

11

{zead in interior node data for thie zone } 12
writeln(OutFile); 13,
writeln(OutFile,’ Interior node definition -- Zone ’,Zone:3); 14
writeln(OutFile); 15
writeln(OutFile, ’'Node X Coor Y Coor’); 16
writeln(OutFile,’~===  =ecce=s ccccas "y 17

if NumInt > 0 then 18

for Node := 1 to NumInt do 19

with CurrINode do 20

begin 21
Readln(InFile,Coord[x}, Coord(yl}); 22
PutIntNode(Zone,Node,CurrINode); 23
writeln(Outfile,succ({Node):4,’ ', 24

Coord{x) :RealWidth, ' ', 25

Coord(y} :RealWidth); 26

end; 27

end; { of zone loop } 28

END; { procedure get_DATA )} 39
0

{~=->>>0pen_Text_File<<< } 31
{ prooedure to open text files for either reading of writing. } 32
} 33

procedure OFEN_TEXT FILE(var File_to_Open : text; 34
Name_File : File_namse; 35

Flag : Pile Op); 36

37

begin 38
Assign(File_To_Open,Name_File); 38

Cese Fleg of 40

Rd : begin 41

{81~} 42
Reset(File_To_Open); 43

{814} 44

if IOresult <> 0 then 45

begin 48

writeln(“G); 47

writeln(’File does not exist ’); 48

halt; {Stop program} 49

ond; 50

end; { of Read Case } 51

Wrt: Rewrite(File_To_Open); 52

end; { of case } 53

end; { of OPEN_TEXT FILE } 54
gs

6

procedure WriteFloatTPV(Mat: TPVArray.TPArray; Size :word; Length, Decimal : byte; 57
Header : Titlestring); 58

{- output formatted listing of TP virtual array to outfile } 59
60

Const Pagewidth = 80; 81
62

Var 83
Min, Max, Mnl, Row, Col, Numberval : word; 684
Blank, Padstrl, Padstr2 : etringl10); 65
66

BEGIN 67
Blank := ' ' 68
Rumberval := (Pagawidth - 5) div (length + 1) - 1; 69
Max := 0; 70
Writeln(Outfile); 71
Writeln(Outfile, Header); 72
Writeln(Outfile); 73
Repest 74
Min := Mex + 1; ;g

Max := Min + Numberval;
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MN1 := Size - Min;
If (Mnl < Numberval + 1) then Max := Sige;
Write(Outfile, ‘R/C’);
PedStrl := copy(Blank,l,Length div 2 + 1);
Pedstr2 := copy(Blank,l,Length div 2 - 2);
For Col := Min to Max do Writa(Outfile,Padatrl,Col:3,Padstr2);
Writeln(Outfile);
For Row := 1 to Size do
Begin

Write(Outgile,Row:3,’ ');

For Col := Min To Max do Write(Outfile,

sviloat(Mat,Row,Col) :Length:Decimel,’ ');

dH:itol.n(Outtll.o) H 0

’
Writeln(Outfile);
Until Max >= Sige;
Writeln(Outfile,’ ')
End; { procedure write matrix )}

procedure Dump_System(Suffix : File_Ext);
{- outputs system element definitiona }
var Dumpfile : text;
DumpFileName : File_Name;

begin
DumpFileName := ForceExtension(OutFileName,Suffix);
Open_Text_File(DumpFile,DumpfileName,Wrt);
for Zonme i= 1 to Num_Zones do
with ZoneD(Zonel do
begin
writeln(DumpFile,’Zone : ’,Zone:3,' data dump ++++++);
writeln(DumpFile);
writeln(DumpFile, 'StartRow : ’,StartRow);
writeln(Dumpfile);
for Element := 1 to NumElems do
begin
CurrElNum := GetElementNum(Elements,Element);
GetElement (CurxElNum,CurrEl);
with CurrEl do
begin
writeln(DumpFIle, 'Zonal EL #: ’,Element:5,’ ’,’Global El #:
writeln(DumpFile, 'Element SF Typo. 4 !mﬂyposu[tlsrrypo]);
w:ieoln(buapnh,'nnodo !’ ,A.Node:5,’
'ADOF ' ,A.DOF :5,! |' ,
‘Bnode ',B.Nodo:5,‘ ',
'BDOF *,B.DOF :5)
ond;
ond;
ond;
close(DumpFile);
end;

procedure DumpH_F(Ver H, F : TPVArray.TPArray;
RowSize, ColSize :word; Length, Decimal : byte;
Header : Titlestring);
{ dumps matrix out in row order in & linear list )
Var
Mnl, Row, Col, Numberval : byte;
Min, Max : float;
GrdFile : text;
GrdFileName : File Name;

BEGIN
GrdFileName := ForceExtension(OutFileName,’MAT');
Asaign(GrdFile,GrdFileName);
Rewrite(GrdFile);
Min := 0.0;
Max := 0.0;
{ find max-min of mat }
for Row := 1 to RowSize do
begin
if Min > gvtloet(F,Row,1) t.hcn Min := gvfloat(F,Row,l);
if Max < gvfloat(F,Row,1) than Max := gvfloat(F,Row,1);
for col := 1 to Colsuo do
begin
if Min > gvfloat(H,Row,Col) then Min := gvfloat(H,Row,Col);

* ,CurgElNum: 5);
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if Max < gvfloat(H,Row,Col) then Max := gvfloat(H,Row,Col);
ond;
end;
Writeln(GrdPile, 'DSAA’);
Writeln(GrdPile,ColSize + 1,’ ',RowSize);
Writeln(GrdFile,1,’ ',ColSize+l);
Writeln(GrdFile,1,' ',RowSisge);
Writeln(GrdPile,Min:12,' ’,Max:12);
for Row := 1 to RowSize do
begin
For Col := 1 to ColSize do
Write(GrdPile,gvtloat(H,Row,Col):Length:Decimel,’ *);
dwutol.n(ozdﬂlo, gvEloat(F,Row,1):Length:Decimal);
end;
Close(GrdFile);
End; { procedure write matrix }

procedure WriteBoundarySolution;
{= formatted output for LINEAR elemsant solution )}

Const Rumberval = 2;

Var
Min, Max, Mnl, J : byte;
Sign : shortint;
Conductivity : float;

BEGIN
Writein(Outfile);
Writeln(Qutfile,’>>> Boundery values ');
Writeln(Outfile);
For Zone := 1 to Num Zones do
with ZoneD{Zone] do
begin
Conductivity := Kx; {isotropic for now}
Max := 0;
writeln(Outfile,'Zone : ',Zone:3d);
Repeat
Min := Max + 1;
Max := Min + Numberval;
MN1 := NumElems - Min;
If (Mnl < Numberval + 1) then Max := NumElems;
Write(Outfile, ’Zone Elem’);

For J := Min to Mex do Write(Outfile,Center(Long2Str(J),Width*2));

Writeln(Outfile);
write(OutFile, ’Global El');
For J := Min to Max do
begin
CurrElNum := GetElementNum(Elements, J);
write(OutFile,Center(Long2Str(CurrElNum) ,Width*2));
end;
writeln(OutFile);
write(OutFile, 'Elem, Node ’);
for J := Min to Max do write(OutFile,CentexCh(’A’,’-’,Width),
CenterCh(’'B’,’~',Width));
writeln(OutFile);
Write(Outfile,’X-coor ')
For J := Min To Max do
begin
CurrElNum := GetElementNum(Elements, J);
GetElement (CurrElNum, CurrEl);
Write(Outfile,GNode™ [CurrEl.A .Node] [X]:Width:Places,
GNode” [CurzEl.B.Node) [X) :Width:Places);
end;
Writeln(Outfile);
Write(OQutFile, 'Y~coor ");
For J := Min To Max do
begin
CurrElNum ;= GetElsmentNum(Elements, J);
GetElement (CurrElNum, CurrEl);
Write(Outfile,GNode" (CurzEl.A.Node) {Y]:Width:Places,
GNode” [CurxEl.B.Node)] [Y] :Width:Places);
end;
Writeln(Outfile);
Write(Outfile,’N Flux in ');
For J := Min To Max do

~traan
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begin
CurrElNum := GetElementNum(Elements, J);
8Sign :» abs(CurrElNum) div CurxrElNum;
GetElement (CurzrEilNum, CurrEl);
Write(Outfile,~Sign * CurrEl.A.DFhi/Conductivity:Width:Places,
-8ign * CurzEl.B,.DPhi/Conductivity:Width:Places);
end;
Writeln(Outfile);
Write(Outfile,’'N Flow in ’);
For J := Min To Max do
begin
CurrElNum := GetElementNum(Elements, J);
Sign := abs(CurxElNum) div CurrElNum;
GetElement (CurrElNum, CurrEl);
Write(Outfile,Sign * CurrEl.A.DPhi:Width:Places,
Sign * CurxEl.B.DPhi:Width:Places);
end;
Writeln(Outfile);
Write(Outfile, 'Potential ’);
For J := Min To Mex do
begin
CurrElNum := GetElementNum(Elements, J);
GetElemant (CurrElNum, CurrEl);

Write(Outfile,CurrEl A, Phi:Width:Places,CurrEL.B.Phi :Width:Places);

ond;
Writeln(Outfile);
writeln(OutFile);

Until Max >» NumElems;
end; { with/for }
End; { procedure write boundary solution }

procedure WriteSourceSolution;
{~ formatted output for source solution }

Const

Var

BEGIN

Kumberval = §;

Min, Mex, Mnl, J : byte;

Writeln(Outfile);
Writeln(Outfile,’'>>> Source/sink values ’);
Writeln(Outfile);

For

Zone := 1 to Num_Zones do

with ZoneD{Zone] do
begin
Max := 0;
writeln(Outfile,’Zone : ',Zone:3);
if NumiWells > 0 then
Repeat

Min := Max + 1;
Max := Min + Numberval;
MN1 := NumiWells ~ Min; .
If (Mnl < Numberval + 1) then Max := NumWells;
Weite(Outfile, 'Well ')
For J := Min to Mex do Write(Outfile,Center(Long2Str(J),Width));
Writeln(Outfile);
Write(Outfile, 'X-coor )
Por J := Min To Max do
begin
GetWell(Zone,J,Curriell);
grit.o(Outﬁlo,Cutrﬂoll.Coord[X] :Width:Places);
end;
Writeln(Outfile);
Write(OutFile, 'Y~-coor ')
For J := Min To Max do
begin
GetWell(Zone,J,Curxiell);
gzlto(Out.ﬂlo,Curanll.Coord[Y] :Width:Places);
end;
Writeln(Outfile);
Write(Outfile,’'Potential ’);
For J := Min To Mex do

begin
GetWell(Zone,J,CurxWell);
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z:!.t:o (Outfile,CurriWell ,Head:Width:Places);
ond;
Writeln(Qutfile);
Write(Outfile, 'Flow (in-) ');
Por J := Min To Max do
begin
GetWell(Zone,J,CurzWell);
Write(Outfile,CurrWell Flow:Width:Places);
ond;
Writeln(Outfile);
writeln(OutFile);
Until Mex >= Numiells;
end; { with/for }
End; { procedure write source solutions }

procedure WriteInteriorSolution;
(- formatted output for interior node solution }

Const Numbexval = 5;

var
Min, Max, Mnl, J : byte;

begin
Writeln(Outfile);
Writeln(Outfile,’>>> Interior node values ’);
Writeln(Outfile);
For Zone := 1 to Num_Zones do
with ZoneD(Zone) do
begin
Max := 0;
writeln(Outfile, 'Zone : ’,Zone:3);
if NumInt > 0 then
Repeat
Min := Max + 1;
Max := Min + Numberval;
MN1 := NumInt - Min;
If£ (Mnl < Numberval + 1) then Max := NumInt;
Write(Outfile, 'Int. Node’);

For J := Min to Max do Write(Outfile,Center(Long2Str(J),Width));

Writeln(Outfile);
Write(Outfile, 'X~coor ")
For J := Min To Max do
begin
GetIntNode(Zone,J,CurrINode);
Write(Outfile,CurrINode.Coord(X):Width:Places);
end;
Writeln(Outfile);
Write(OutPile, 'Y~-coor ');
For J :» Min To Mex do
begin
GetIntNode(Zone,J,CurrINode);
gzin(menh,CurrINodo.COo:d[Yl :Width:Places);
ond;
Writeln(Outfile);
Write(Outfile, 'Potential ');
For J := Min To Max do
begin
GetIntNode(Zone,J,CurrINode);
Write(Outfile,CurrlNode.Phi:Width:Places);
ond;
Writeln(Outfile);
Write(Outfile, 'Flow X-dir ');
For J := Min To Max do
begin
GetIntNode(Zone,J,CurrINode);
ler.ln(Oueﬂlo,CquNodo DPhiX:Width:Placea);
end;
Writeln(Qutfile);
Write(Outfile, 'Flow Y-dir ’);
For J := Min To Max do
begin
GetIntNode(Zone,J,CurriNode);
Write(Outfile,CurrINode.DPhiY:Width:Places);
ond;
Writeln(Outfile);
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writeln(OutPile); 1
Until Max >= NumiInt; 2
end; { with/for ) 3
End; { procedure write interior Solutions } 4
5

procedure writeGridFile; 8
{= prints out solution grid files for contouring )} 7
ver 8
Phifile, 9
DPXfile, 10
DPYfile : text; 11
PhiFileNeme, 12
DPXFileName, 13
DPYFileName: File_Name; 14
15

begin 16
{ write out phi solution } 17
PHIFileName :» ForceExtension(OutFileName,'PHI’); 18
Open_Text_File(PHIFile, PHIFileName,Wrt); 19
for e = 1 to Num Zones do 20
with ZoneD[Zone) do 21
begin 22
23

{ write out leading node for each LINEAR olmmb - for now } 24
for Element := 1 to NumElems do 25
begin 26
CurrElNum := GetElementNum(Elements, Elsment); 27

4if CurrElNum > 0 then 28
begin 29
GetElement (CurrElNum, CurxEl); 30

;w; CurrEl.A do { write only leading nodes for now-quadratic nodes will need other code }31

egin 32

12 not NodeF“[Node] then 33

begin 34
Writeln(PhiFile,GNode"[Node) [X]:Width:Places,’ ’, 3s

GNode" [Node) [Y] :Width:Places,’ ’, 35

Phi:Width:Places); 37

Nodci“‘[llodol = True; a8

end; 39

end; 40

end; 41
and; 42

{ write out interior phis ) 43
for Node := 1 to NumInt do [
begin 45
GetIntNode(Zone,Node,CurrINode); 46
with CurrlNode do ) 47
Writeln(PhiFile,Cooxd(X):Width:Places,’ ’, 48
Coord(Y) :Width:Pleces,’ ’, 49

Phi:Width:Places); 50

end; 51

{ write out well heads } 52
for Node := 1 to NumWells do 53
begin 54
GetWell(Zone,Node,Curriell); 55
with Cu::Woll do 56
Writeln(PhiFile,Coord([X):Width: Pl.acu.' ', 57
Coord(Y] :Width:Pleces,’ ' 58

Head:Width:Places); 59

end; 60
end; 61
CJ.ou( PHIFile); 62
63

DFXFileName := ForceExtension(OutFileName, 'DFX’); 64
DPYFileNeme := ForceExtension(OutFileName,’DFY’); 85
Open_Text_File(DPXPile, DPXFileName,Wrt); 66
Open_Text_File(DFYFile, DPYFileName,Wrt); 67
for Zons i» 1 to Num_Zones do 68
with ZoneD[Zone) do 69
for Node := 1 to Numint do 70
begin 71
GetIntNode(Zone,Node,CurxiNode); 72
with CurrINode do 73
begin 74
Writeln(DPXFile,Coord(X) :Width:Pleces,’' ’, ;g

Coord(Y):Width:Places,’ ’,
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DPhiX:Width:Places);
Writeln(DPYPile,Coord(X) :Width:Places,*® *,
Coord(Y) :Width:Pleces,’ °*,
DFhiY:Width:Places);
end;
end;
Close(DPXFIle);
Close(DFY¥File);
and; { of WritegridSol }

procedure DumpSolVec;
{- dumps solution vector to outfile )}
var DOF : globaldof;
begin
writeln(OutFIle);
writeln(OutFile, 'w==> Solution vector dump ');
for DOF := 1 to DOFCount do
writeln(OutFIle ,DOF:4,’ ! ,gvfloat(F,DOF, 1):12:4);
:x:uoln(omrno) H
end;

begin
GetDate(Year, Month, Day, DsyofWesk);

GetTime(Hour, Min, Sec, Se0l00);
.nd. ( of Untt‘ B7FIL2 CRARANAARARNNARAAANRANRAARNNCS }
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Un:b B7Solver;

Program GWBEM - Unit B7SOLVER

Contains code for solving system equations using
virtual arrays.

Copyright (c) 1989, Mark A, Liabe and Iowa Stats
University

ALL RIGHTS RESERVED

TPRArray and TFVArray units copywrits (c) 1987 by
TurboPower Softwars. Part of Turbo Professional
Programmer’a Toolbox VA.0. For information, contact:

TurboPower Software

3108 Scotts Valley Drive, Suite 122
Scotts Valley, CA 95068

(408) 438-8808

Laat modified : 10/30/88 11:37 AM

interface

uaes TPRArray,
TEVArray,
TPArr;

function Solver(Sise : word;
var A,B : Pointer; { system matrix/ known vector )}
var Cond_Num : float) : boolean;
{~ main routine for system solver. Returns false if system singular }

{

implementation

uses B7Utils;

type str80 = string(80];

const ZeroB : byte = 0;
ZeroF : float = 0.,0;
MaxFloat : float = 1.7¢308;

var IPVT : Pointer;

{--->SOLVE<
Routine for the solution of {A] (x) = (B) system of equations

Note: all matrices are ZERO based, meaning first index is always 0.
As such, this routine will look scmewhat awkward. Access to all
matrices is forcsd through function g?float and procedure p?float,
since thsse are dynamic matrices.

A ia a virtual array, while all other vectors are RAM arrays.

Last modified: August 29, 1988 9:34 AM

o o St gt Gt gt gt g g

e iy by gy iy gy iy iy

procedure SOLVE( Size : word; { system size }
var A,B : Pointer); { A matrix/ B vector }
var
I, J, K, KB, KP1, KM1, M : integer;
T : float;

begin
if ( Size <> 1 ) then
begin
for K := 1 to pred(Size) do
begin
KP1 := succ(K);
M := grword(IPVT K, 1);
T := gvtloat(h,M,1);
pviloat(B,M,1,gveloat(B,K,1));
pviloat(B,K,1,T);

for I := KP1 to Size do pvfloat(B,I,1,gvfloat(B,I,1) + gvfloat(A,I,K) * T);

end; { K - loop }
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for KB := 1 to pred(Size) do
begin
KM1 := Size - KB;
K := suco(KMl);
pviloat(B,K,1, gviloat(B,K,1) / gvfloet(A,K,K));
T := ~gvfloat(B,K,1); .
for I := 1 to KMl do pvfloat(B,I,1, gvfloat(B,I,1) + gvfloat(A,I,K) * T);
end; { XB - loop }
snd; { Size - if )
pviloat(3,1,1, gvfloat(B,1,1) / gvfloat(A,l,1));
snd; { SOLVE procedure }

{==~>DECOMP<
{ Decomposss the matrix A and returns the condition number
{ Adapted from:

{ Forsythe G. E., M, A, Malcolm and C.E. Moler

{ Computer Methods for Mathematical Computations

{ Prentice~Hall, 1877.

{ Note: To caloulate det of A, simply multiply the returned diag.
{ values together and then multiply product by +1 if even # or row
{ interchanges, and by -1 if odd # of row interchanges. ¢ of int-
{ erchanges is returned in last element of IPVT (i.e. IPVT(Size)

t Last modified August 29, 1088 9:34 AM

p
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rocedure DECOMP (Size : word;
var A : Pointer;
var Condition : float);
var I, K, J, M, KP1, kM1, KB : word;
T, Anorm, Ynorm, Znorm, EX : float;
Work : Pointer; { dynamic RAM array ~- Turbo Professional v4.0}

procedure SOLVEDR( Size : word;
var A,B : Pointer);
{~ special version of SOLVE routine to handle Virtual A mat & RAM B mat }
var
I, J, X, KB, KP1, KM1, M : integer;

T : float;
begin
if ( Size <> 1 ) then
begin
for K := 1 to pred(Size) do
begin

KP1 := suco(K);
M := grword(IFVI, X, 1);
T := grfloat(B,M,1);
prfloat(B,M,1,grfloat(B,K,1));
prfloat(B,X,1,T); ’
for I := KP1 to Size do prfloat(B,I,1,srfloat(B,I,1) + gvfloat(A,I,K) * T);
end; { K - loop }
for KB := 1 to pred(Size) do
begin
KMl := 3ize - KB;
K := succ(KMl);
prfloat(B,K,1, grfloat(B,K,1) / gvtlost(A,K,K));
T := -grfloat(B,X,1);
for I := 1 to KM1 do prfloat(B,I,1, grfloat(B,I,1) + gvfloat(A,I,K) * T);
end; { KB - loop }
end; { Size - if )
prflost(B,1,1, grfloat(B,1,1) ; gvfloat(A,l,1));
end; { SOLVE procedure }

begin
{ make the Work vector }
TFRArray.MakeA(Work, Size, 1, sizeof(Float));
TPRArray.ClearA(Work, ZexroB, TFRArray.FastInit);

CONDITION := MaxFloat; { Set init value of condition - reset later }
prword(IPVT,Size,1,1); { This ia used to in determinant calculation }
if (Size <> 1) then

begin

Anorm := 0.0;

for J := 1 to Size do

begin
T :=» 0,0;
for I := 1 to Size do T := T + sbs(gvfloat(A,l,J));
i£ T > Anorm then Anorm := T;
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end;
for K := 1 to pred(Sizs) do
begin
KP1 := suco(K);
M = K;
for I := KP1 to Sima do
if abs(gvtloat(A,I K)) > abs(gvfloat(A,M,K)) then M := I;
prword(IPVT,K,1,M);

{ IPVI(8iza) contains tha # of row intarchanges dona, }
if ( M <> K ) then prword(IPVT,Size,},succ(gxword(IFVT,Size,1)));
T := gvfloat(A,M,K);
pviloat (A, M, K, gvfloat(A,K,K));
pviloat(A K, X,T);
if (T <> 0,0) then
begin
for I := KP1 to Size do pvflost(A,I,K, -gvfloat(A,I,K)/T);
for J := KP1 to Size do
begin
T := gvfloat(A,M,J);
pvtloat(A,M,J,gveloat(A K, J));
pviloat(A.K,J,T);
i2 (T <> 0.0) then
for I := KP1 to Siza do pvfloat(A,I,J,gvfloat(A,I,J) + gvfloat(A,IK) * T)
end; { J loop }
end; { T - 42}
end; { K loop }
for X := 1 to 8ize do
begin
T :=0.0;
i£ (X <> 1 ) then
begin
KMl := pred(K);
for I := 1 to KMl do T := T + gvfloat(A,I,K) * greloet(Work,1i,1);
and; { K -~ i2 )}
EK := 1.0;
i (T < 0.0 ) then EK := ~1,0;
if ( gvfloat(A,K,K) = 0,0) thsn
begin
TFRArray.DieposeA(Work);
exit; { to main block }
ond;
prfloat(WORK,K,1, -(EK + T)/gvfloat(A,K,K));
and; { K = loop }
for KB := 1 to pred(Size) do
bagin
K := Size - KB;
T :=0,0;
KP1 := gucc(K);
for I := KP1 to Size do T := T + gvfloat(A,I,K) * grfloat(Work,k,1);
prfloat (WORK,K,1,T);
M := grword(IFVT,K,1);
if (M <> X) then
begin
T := grfloat(WORK,M,1);
prfloet (WORK,M, 1,srfloat (WORK,K,1));
prfloat(WORK,K,1,T);
end; { M- if )}
end; { KB - loop )
YNORM := 0.0;
for I := 1 to Siza do Ynorm := Ynorm + abs(grfloat(WORK,I,1));
SOLVEDR(Size, A, WORK);
Znorm := 0,0;
for I := 1 to Size do Znorm := Znorm + abs(grfloat(WORK,I,1));
CONDITION := Anorm * Znorm / Ynorm;
if (CONDITION < 1.0 ) then CONDITION := 1,0;
end { Size - if )}
else if gvfloat(A,l,1) <> 0.0 then CONDITION := 1.0;
TERArray.DisposeA(Work);
and; { DECOMP procedure }

function Solver(Size : woxd;
var A,B : Pointer; { system matrix/ known vector }
var Cond_Num : float) : boolean;
{- mein routine for system solver. Returns false if system singular }

.
'
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begin
Solver := Felss;
TPRArray . MakeA(IPVY,8ize,1, sizeof(word)); { use RAM arrsy for pivot vactor )}
TPRArray.ClearA(IPVT, ZeroB, TFRArray.Festlnit);
StertTimex(’'Decomposing system matrix’);
Deccap(8ize, A, Cond_Num);
StopTimer(’decompose system matrix’);
If (Cond Num + 1.0) = Cond Num then sxit; { singular system w/in precision of machins }
StartTimer(’Solving system equetions’);
Solve(Size,A,B);
StopTimer(’solve system of equetions’):;
TPRArray.DisposeA(IPVT);
Solver := True;
End; { procsdure solva }

and. { Of Unit B7S0Lvar S#RaNARANARANAARAIRNARNAIANCS }
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{
Program GWBEM - Unit B7Error

Contains error trapping code for GWBEM,

Copyright (c) 1988, Mark A. Liebe and Iowa State

University
ALL RIGHTS RESERVED

Last modified : 10/30/88

interface
Uses B7DEF;

type IOErrset = set of byte;
ErrorStr = atring(40];

procedure ShowError(ErrorMes : ErrorStr; Stop : boolesn);

{~ puta up error window snd stops program if atop true }

function I0_Bad(IORes : word; OKSet : IOErrSet) : boolean;
{- checks IOResult, if in OK error set then returns false, else displays }

{ message and returns true )}

procedure ErxoriMem;
{~ last ditch bail out )

{
{SF+})
implementation

uses TPString,
TPCrt,
TPWindow,
TPVArray;

const ErrorAttr : byte = S4E;
Escape = $27;

var
CH : Char;
ErAttr : byte;
savedExitProc : Pointer; { old exitProc Pointer

procedure ErrorMem;
begin
Window(1,1,80,25);
NormVideo;
Clrsocr;
Writeln(’Insufficient Memory’);
Halt(1);
ond;

function ErrorText(ErrorNum : word) : errorStr;

{- returns error message asssociated with error messages}

begin
case ErrorNum of
ErrorText :
3: ErrorText :
4: ErrorText :
5: ExrorText :
8: ErrorText :
12;: ErrorText :
15: ErrorText :
16: ErrorText :
17: ErrorText :

= '‘File not found’;
= 'Path not found’;

= 'Too many open files’;

= ‘File access denied’;

= ‘Invalid file handle’;

= 'Invalid file access code’;
:w ‘Invalid drive number’;
-

= 'Disk read error’;
= ‘Disk write error’;
= 'File not assigned’;

100: ErrorText
101;: ErrorText
102: ErrorText :

}

‘Cannot remove current directory’;
‘Cannot rename across drives’;
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103: ErrorText := 'File not open’;
104;: ErrorText := ’File not open for input’;
103;: ErrorText := 'File not open for ocutput’;
106;: ErrorText := ’Invalid numeric format’;
150: ErrorText := ’Disk is writa-protected’;
151: ErrorText := ‘Unknown unit’;
152;: ErrorText := 'Drive not ready’;
153: ErrorText := 'Unknown coamand’;
134: ErrorTaxt := 'CRC error in dste’;
155: ErrorText := ’Bad drive request atruoture length’;
158: ErrorText := ’'Disk aesk error’;
157;: ErrorText := 'Unknown media type’;
158: ErrorText := 'Sector not found’;
150: ErroxText := ’Printer out of paper’;
160: ErrozText := 'Device write fault';
161: ErrorText := ’'Device read feult’;
162: ErrorText := 'Hardwere failure’;
200: ErrorText := ’'Division by zero’;
201: ErrorText := ’Range check error’:
202: ErrorText := ’Stack overflow error’;
203: ErrorText := 'Heap overflow error’;
204: ErrorText := ’'Invalid pointer operation’;
205: ErrorText := 'Ploating point overflow’;
206: ErrorText := 'Ploating point underflow’;
227: ErrorText := 'Invalid floating point operstion’;
elee
guoz’roxt 1= ‘Unknown Error # '+ Long28tr(ExitCode)
ond;
ond; { func ErrorText }

procedure WriteIOError( IORes : word);

{- puts up error window end writes 10 error messase }
var

IOText : ErrorStr;

IOWindow : WindowPtr;
begin

IoText := ErrorTa t&l 8 );
FramsChars := 'rt| :‘i':
if not MaksWindow(IOWindow,18,14,61,21,True,True,Falae,ErAttr, ExrAttr,ExAttz,'’)
than Erroriem;

if Not DisplayWindow(IOWindow) THEN ErrorMem;
FastWriteWindow(Center(’~- IO ERROR --’,40),1,1,ErAttr);
FastWriteWindow(Center(IOText,40),3,1,ErAtts);
FastWriteWindow(Center(’'Press ESCAPE’,40),5,1,ErAttr);
repest. until Readkey = Escsps;
IOWindow := EraseTopWindow;
DisposeWindow(IOWindow);

end; { of WritelOError } .

funoction I0_Bad(IORes : word; OKSet : IOErxSet) : boolean;
{- checks IOResult, if in OK error sst then returns false, else displays }
{ message and returns true }
begin
I0_Bad := True;
OKSet := OKSet + (0];
if byte(IORes) in OKSet then
begin .
I0_DBed := False;
Exit
end
else WriteIOError(IoRes);
ond; { of I0_Bad }

procedure Cleanup;
{- frees asrraye, closes files, etc }
begin
if H <> nil then DisposeA(H,True);
g:?}a nil then DisposeA(F,True);
Close(InFile);
Close(OutFile);
{81+)
end; { proc Clesnup }

procedure ShowError(ErrorMes : ErrorStr; Stop : boolean);

s sy
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{~ puts up exrror window and stops program if stop true }

var ErrorMesWindow : WindowPtr;
begin

FrameChars := 'rl1"-|';
if not MakeWindow(ErrorMesWindow,19,14,81,21,True,Trus,Falee,BrAtts,ErAttr,ExAtts,*’)
then ErrorMen;
if Not DispleyWindow(ErrorMesWindow) THEN ErrorMem;
FastWriteWindow(Center(Bxrrories,40),3,1,ExAttr);
FastWriteWindow(Centax(’Press ESCAPE’,40),5,1,ErAttr);
rapeat until Rsadkey = Escape;
DispossWindow(ErrorMasWindow);
NormalCursor;
if Stop then
begin
CleanUp;
Helt;
snd;
end; { proo ShowError }

PROCEDURE ExitSolver;

{~ custom error handler )

var ExitText : ErrorStr;

ErroxWindow : WindowPtr;

begin

IF ErrorAddr <> Nil THEN
begin
ExitText := Error .i“ itCode);
FremeChare := 'p -1
if not MakeWindow(ErrorWindow,19,14,61,21,True, True,False,ErAttr,ExAttr, ErAttr,’’)
then ErrorMem;
if Not DisplayWindow(ErrorWindow) THEN ErrorMem;
FestWriteWindow(Center(ExitText,40),3,1,ErAttr);
FastWriteWindow(Center(*'Press ESCAPE®,40),5,1,ErAttr);
repeat until Readkey = Escape;
DisposeWindow(ErrorWindow);
NormalCursor;
ErrorAddr := Nil;
end;
Cleanup;
ExitProc := SevedExitProc;
halt;

.
?

end;

bagin

sevedExitProc := exitProc; { inatall current exit proc for this unit }
ExitProc := §ExitSolver;
MapColors := Trus;

ErAttr := MapColor(ErrorAttr);
.I’Id. { of Unit 5722302 CHNRRANNARRNNRNRARNRRARANRNANCC }
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Unit TPArr;
{

Program GWBEM - Unit TPARR

Contains code for acosssing virtual arrays. Used this
technique in case dats structure chsnged so as to avoid
extensive changes to solution code.

Copyright (c) 1880, Msrk A. Lieba and Iowa State
University

ALL RIGHTS RESERVED

TPRArzay and TPVArray units copywrite (o) 1987 by
TurboPower Software. Part of Turbo Profesaional
Progranmer’s Toolbox VA.0. For information, contact:

TurboFower Software

3109 Scotts Vallsy Drive, Suite 122
Scotts Valley, CA 835088

(408) 438-8608

Last modified : 0/21/88 1:20 PM

interface

uses TFRArray,
TPVarray;

type float = double;

procedure Printeger(var Arr : Pointer; Row, Col : integer; val : integer);
{= puts integer value in RAM array }

function Grinteger(var Arr : Pointer; Row, Col : integer) : integer;
{- gets integer value from RAM array }

procedure Prword(var Arr : Pointer; Row, Col : word; val : word);
{- puts word value in RAM array }

function Grword(var Arr : Pointer; Row, Col : word) : word;
{~ gets word value from RAM array )} ,

procedure Prfloat(var Arr : Pointer; Row, Col : word; val : flost);
{- puts float value in RAM array }

function Grfloat(var Arr : Pointer; Row, Col : woxd) : float;
{- sets float value from RAM array }

procedure Pvword(var Arr : Pointer; Row, Col : word; val : word);
{~ puts word value in VIRTUAL array } )

function Gvword(var Arr : Pointer; Row, Col : woxd) : word;
{~ sets word value from VIRTUAL array }

procedure Pvfloat(var Arr : Pointer; Row, Col : 